Skip to main content

Lysosomal and Other Indigenous Non-plasmin Proteases in Bovine Milk

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

Abstract

Bovine milk contains a range of indigenous proteolytic enzymes and enzyme systems. The major bovine proteolytic enzyme in milk is plasmin (Chap. 2), being part of a complex system consisting also of proenzymes, activators and inhibitors, called the plasminogen system, coming from the blood. Other proteolytic enzymes in milk can be secreted from the somatic cells, leaked from dead cells or even secreted by mammary epithelial cells. These enzymes mainly comprise of the lysosomal cathepsins and, amongst these, cathepsin D is the most well described, but other cathepsins are also present. These indigenous proteases belong to various classes, and exhibit different specificities and requirements for activity, as well as segregate into different fractions during processing. Thereby, they can affect the yield, quality and shelf life of milk and dairy products, depending on different conditions such as their heat stability and accessibility to substrates. Indigenous proteolytic enzymes in milk for example, may contribute to lower cheese yield or contribute to instability of UHT milk. On the other hand, biologically speaking, they may have physiological roles linked to pre-digestion in the infant, formation of bioactive peptides and reorganisation of mammary tissue. In cheese, they contribute to cheese ripening by providing the larger polypeptides used further down in the process by, e.g., microbial proteases involved in cheese texture and aroma development. For all enzymes, it is important to note that there are likely differences between what is experienced in model systems using pure protein substrates (e.g., individual caseins) and what is happening in the actual dairy matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albenzio M, Santillo A, Caroprese M, D’Angelo F, Marino R, Sevi A (2009) Role of endogenous enzymes in proteolysis of sheep milk. J Dairy Sci 92(1):79–86

    Google Scholar 

  • Albenzio M, Santillo A, Kelly AL, Caroprese M, Marino R, Sevi A (2015) Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts. J Dairy Sci 98:7587–7594

    Google Scholar 

  • Andreatta E, Fernendes AM, de Santos MV, Mussarelli C, Marques MC, de Oliveira CAF (2009a) Composition, functional properties and sensory characteristics of Mozzarella cheese manufactured from different somatic cell counts in milk. Brazlian Archives Biol Technol 52:1235–1242

    Google Scholar 

  • Andreatta E, Fernendes AM, de Santos MV, Mussarelli C, Marques MC, Gigante ML, de Oliveira CAF (2009b) Quality of minas fresal cheese manufactured from milk with different somatic cell counts. Pesquicsa Agropecuraria Brasileira 44:320–326

    Google Scholar 

  • Athauda SBP, Takahashi T, Kageyama T, Takahashy K (1991) Auticatalytic processing of procathepsin E to cathepsin E and their structural differences. Biochem Biophys Res Commun 175:152–158

    Article  CAS  PubMed  Google Scholar 

  • Auldist MJ, Coats ST, Sutherland BJ, Clarke PH, McDowell, GH, Rogers GL (1996) Effect of somatic cell count and stage of lactation on the quality of full cream milk powder. Aust J Dairy Technol 51:94–98

    Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H and cathepsin L. Meth Enzymol 80:535–561

    Article  CAS  Google Scholar 

  • Benfeldt C, Larsen LB, Rasmussen JT, Andreasen PA, Petersen TE (1995) Isolation and characterization of plasminogen and plasmin from bovine milk. Int Dairy J 5:577–592

    Article  CAS  Google Scholar 

  • Bohley P, Seglen PO (1992) Proteases and proteolysis in the lysosomes. Experientia 48:151–157

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Salcedo J, Robinson RC, Henrick BM, Barile D (2019) Peptidomic and glycomic profiling of commercial dairy products: identification, quantification and potential bioactivities. NPJ Sci Food 3(4):1–13

    Google Scholar 

  • Capony F, Rougeot C, Montcourrier P, Cavailles V, Salazar G, Rochefort H (1989) Increased secretion, altered processing and glycosylation of procathepsin D in human mammary cancer cells. Cancer Res 49:3904–3909

    CAS  PubMed  Google Scholar 

  • Chen SX, Wang JZ, Van Kessel JS, Ren FZ, Zeng SS (2010) Effect of somatic cell count in goat milk on yield, sensory quality and fatty acid profile of semisoft cheese. J Dairy Sci 93:1345–1354

    Google Scholar 

  • Considine T, Healy A, Kelly AL, McSweeney PHL (2004) Hydrolysis of bovine caseins by cathepsin B, a cysteine proteinase indigenous to milk. Int Dairy J 14:117–124

    Article  CAS  Google Scholar 

  • Considine T, Healy A, Kelly A, McSweeney PLH (2000) Proteolytic specificity of elastase on bovine αS1-casein. Food Chem 69:19–26

    Article  CAS  Google Scholar 

  • Considine T, Healy A, Kelly AL, McSweeney PLH (1999) Proteolytic specificity of elastase on bovine β-casein. Food Chem 66:463–470

    Article  CAS  Google Scholar 

  • Considine T, Geary S, Kelly AL, McSweeney PLH (2002) Proteolytic specificity of cathepsin G on bovine αs1-and β-caseins. Food Chem 76(1):59–67

    Google Scholar 

  • D’Alessandro A, Scaloni A, Zolla L (2010) Human milk proteins:An interactomics and updated functional overview. J Proteome Res 9(7):3339–3373

    Google Scholar 

  • D’Alessandro A, Zolla L, Scaloni A (2011) The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Mol BioSyst 7:579–597

    Article  PubMed  Google Scholar 

  • Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemist 40:1671–1678

    Article  CAS  Google Scholar 

  • Dallas DC, German JB (2017) Enzymes in human milk. Nestle Nutr Inst Workshop Ser 88:129–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Dallas DC, Guerrero A, Parker EA, Garay LA, Bhandari A, Lebrilla CB, Barile D, German JB (2014). Peptidomic Profile of Milk of Holstein Cows at Peak Lactation. J Agric Food Chem 62(1):58–65

    Google Scholar 

  • Dallas DC, Murray NM, Gan J (2015) Proteolytic systems in milk: perspectives on the evolutionary function within the mammary gland and the infant. J Mammary Gland Biol Neoplasia 20:133–147.

    Google Scholar 

  • Demers-Mathieu V, Nielsen SD, Underwood MA, Borghese R, Dallas DC (2017) Analysis of milk from mothers who delivered prematurely reveals few changes in proteases and protease inhibitors across gestational age at birth and infant postnatal age. J Nutr 147:1152–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes AM, Bovo F, Moretti TS, Oosim RE, de Lima CG, Oliveira CAF (2008b) Relationship between the somatic cell count in raw milk and the casein fractions of UHT milk. Aust J Dairy Technol 63:45–49.

    Google Scholar 

  • Fernandes AM, Moretti TS, Bovo F, de Lima CG, Oliveira CAF (2008a) Effect of somatic cell counts on lipolysis, proteolysis and apparent viscosity of UHT milk during storage. Int J Dairy Technol 61:327–332.

    Google Scholar 

  • Fernandes AM, Oliveira CAF, Lima CG (2007) Effects of somatic cell counts in milk on physical and chemical characteristics of yoghurt. Int Dairy J 17:111–115.

    Google Scholar 

  • Gan J, Zheng JY, Krishnakumar N, Gounatilleke E, Lebrilla CB, Barile D, German JB (2019). Selective proteolysis of alpha-lactalbumin by endogenous enzymes of human milk at acidic pH. Mol Nutr Food Res 63(18):1900259

    Google Scholar 

  • Gaucher I, Molle D, Gagnaire V, Gaucheron F (2008) Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocolloids 22:130–143

    Google Scholar 

  • Geary U, Lopez-Villalobos N, O’Brien B, Garrick DJ, Shalloo L (2013) Meta-analysis to investigate relationships between somatic cell count and raw milk composition, Cheddar cheese processing characteristics and cheese composition. Irish J Ag Food Res 52:119–133

    Google Scholar 

  • Gieselmann V, Hasilik A, von Figura K (1985). Processing of human cathepsin D in lysosomes in vitro. J Biol Chem. 260(5):3215–3220

    Google Scholar 

  • Grieve A, Kitchen BJ (1985) Proteolysis in milk: the significance of proteinases from milk leucocytes and a comparison of the action of leucocytes, bacterial and natural milk proteinases on caseins. J Dairy Res 52:101–112

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Dallas DC, Contreras S, Bhandari A, Canovas A, Islas-Trejo A, Medrano JF, Parker EA, Wang M, Hettinga K, Chee S, German JB, Barile D, Lebrilla CB (2015) Peptidomic analysis of healthy and subclinically mastitic bovine milk. Int Dairy J 46:46–52

    Article  CAS  PubMed  Google Scholar 

  • Hachana Y, Kraiem K, Paape M (2010). Effect of plasmin, milk somatic cells and psychrotrophic bacteria on casein fractions of ultra high temperature treated milk. Food Sci Technol Res 16(1):79–86

    Google Scholar 

  • Haddadi K, Prin-Mathhieu C, Moissaoui F, Faure GC, Vangroenweghe H, Burvenich C, Le Roux Y (2006) Polymorphonuclear neutrophils and Escherichia coli proteases involved in proteolysis of casein during experimental E. coli mastitus. Int Dairy J 16:639–647

    Google Scholar 

  • Hachana Y, Paape M (2012) Physical and chemical characteristics of yoghurt produced from whole milk with different levels of somatic cell counts. Int J Food Sci Nutr 63:303–309

    Google Scholar 

  • Hachana Y, Znaiai A, M’Hadami N (2018) Effect of somatic cell count on milk composition and Mozzarella cheese quality. Acta Alimentaria 47:88–96.

    Google Scholar 

  • Hayes MC, Hurley MJ, Larsen LL, Heegard CW, Magboul AAA, Oliveira JC, McSweeney PLH, Kelly AL (2001) Thermal inactivation kinetics of bovine cathepsin D. J Dairy Res 68:267–276

    Article  CAS  PubMed  Google Scholar 

  • Heegaard CW, Christensen T, Rasmussen MD, Benfeldt C, Jensen NE, Sejrsen K, Petersen TE, Andreasen PA (1994a) Plasminogen activators in bovine milk during mastitis, an inflammatory disease. Fibrinolysis 8:22–30

    Article  CAS  Google Scholar 

  • Heegaard CW, Rasmussen LK, Andreasen PA (1994b) The plasminogen activation system in bovine milk: differential localization of tissue-type plasminogen activator and urokinase in milk fractions is caused by binding to casein and urokinase receptor. Biochim Biophys Acta 1222:45–55

    Article  CAS  PubMed  Google Scholar 

  • Hill RD, Lahav E, Givol D (1974) A rennin-sensitive bond in αS1 B-casein. J Dairy Res 41:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hinz K, Larsen LB, Wellnitz O, Bruckmaier RM, Kelly AL (2012). Proteolytic and proteomic changes in milk at quarter level following infusion with E. coli lipopolysaccharide. J Dairy Sci 95: 1655–1666

    Google Scholar 

  • Hurley MJ, Larsen LB, Kelly AL, McSweeney PLH (2000a) The milk acid proteinase: a review. Int Dairy J 10:673–681

    Google Scholar 

  • Hurley MJ, Larsen LB, Kelly AL, McSweeney PLH (2000b) Cathepsin D activity in quarg. Int Dairy J 10:453–458

    Google Scholar 

  • Isidoh K, Kominami E (1994) Multi-step processing of procathepsin L in vitro. FEBS Lett 352:281–284

    Article  Google Scholar 

  • Isidoh K, Kominami E (2002) Processing and activation of lysosomal proteinases. Biol Chem 383:1827–1831

    Article  Google Scholar 

  • Kaminogawa S, Yamauchi K (1972) Acid protease of bovine milk. Agric Biol Chem 36:2351–2356

    Article  CAS  Google Scholar 

  • Kaminogawa S, Yamauchi K, Miyazawa S, Koga Y (1980) Degradation of casein components by acid protease of bovine milk. J Dairy Sci 63:701–704

    Article  CAS  Google Scholar 

  • Kelly AL (1999). Effect of plasmin and somatic cell enzymes on proteolysis in aseptic starter and rennet free model cheeses. Milchwissenschaft 54:249–252

    Google Scholar 

  • Kelly AL, Foley J (1997) Proteolysis and storage stability of UHT milk as influenced by milk plasmin activity, plasmin/β-lactoglobulin complexation, plasminogen activation and somatic cell count. Int Dairy J 7(6–7):411–420

    Google Scholar 

  • Kelly AL, O’Flaherty F, Fox PF (2006) Indigenous proteolytic enzymes in milk: a brief overview of the present state of knowledge. Int Dairy J 16:563–572

    Article  CAS  Google Scholar 

  • Khaldi N, Vijayakumar V, Dallas DC, Guerrero A, Wickramasinghe S, Smilowitz JT, Medrano J F, Lebrilla CB, Shields DC, German JB (2014) Predicting the important enzymes in human breast milk digestion. J Agric Food Chem 62(29):7225–7232

    Google Scholar 

  • Kirschke H, Barrett AJ, Rawlings ND (1998) Lysosomal cysteine proteinases, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Klei L, Yun J, Sapru A, Lynch J, Barbano D, Sears P, Galton D (1998) Effects of milk somatic cell count on cottage cheese yield and quality. J Dairy Sci 81:1205–1213

    Google Scholar 

  • Klein J, Eales J, Zurbig P, Vlahou A, Mischak H, Stevens R (2013) Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics 13:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Lambers TT, Gloerich J, van Hoffen E, Alkema W, Hondmann DH, van Tol EA (2015) Clustering analyses in peptidomics revealed that peptide profiles of infant formulae are descriptive. Food Sci Nutr 3(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Larsen LB, Benfeldt C, Rasmussen LK, Petersen TE (1996) Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation. J Dairy Res 63:119–130

    Article  CAS  PubMed  Google Scholar 

  • Larsen LB, Boisen A, Peterson TE (1993) Procathepsin D cannot autoactivate to cathepsin D at acid pH. FEBS Lett 319:54–58

    Article  CAS  PubMed  Google Scholar 

  • Larsen LB, Hinz K, Jørgensen ALW, Møller HS, Wellnitz O, Bruckmaier RM and Kelly AL (2010) Proteomic and Peptidomic Study of Proteolysis in Quarter Milk after Infusion with Lipoteichoic Acid from Staphylococcus aureus. J Dairy Sci 93:5613–5626

    Google Scholar 

  • Larsen LB, McSweeney PLH, Hayes MG, Andersen JB, Ingvartsen KL, Kelly AL (2006) Variation in activity and heterogeneity of bovine milk proteases with stage of lactation and somatic cell count. Int Dairy J 16:1–8

    Article  CAS  Google Scholar 

  • Larsen LB, Rasmussen MD, Bjerring M, Nielsen JH (2004) Proteases and protein degradation in milk from cows infected with Stretococcus uberis. Int Dairy J 14:899–907

    Google Scholar 

  • Larsen LB, Petersen TE (1995) Identification of five molecular forms of cathepsin D in bovine milk. In: Takahashi (ed) Aspartic proteinases: structure, function and biomedical implications. Plenum Press, New York, pp 279–283

    Chapter  Google Scholar 

  • Larsen LB, Wium H, Benfeldt C, Heegaard CW, Ardo Y, Qvist KB, Petersen TE (2000) Bovine milk procathepsin D: presence and activity in heated milk and in extracts of rennet-free UF-feta cheese. Int Dairy J 10:67–73

    Article  CAS  Google Scholar 

  • Le Roux Y, Laurent F, Moussaoui F, Le Roux Y (2003) Polymorphonuclear proteolytic activity and milk compositional change. Vet Res 34(5):629–645

    Google Scholar 

  • Lewis UJ, Williams DE, Brink NG (1956) Pancreatic elastase: purification, properties, and function. J Biol Chem 222:705–720

    Article  CAS  PubMed  Google Scholar 

  • Li N, Richoux R, Leconte N, Bevilacqua C, Maillard MB, Parayre S, Aubert-Frogerais L, Warlouzel J, Moya-Leclair E, Denis Cm Martin P, Gagnaire V (2017) Somatic cell recovery by microfiltration technologies: a novel strategy to study the actual impact of somatic cells on cheese matrix. Int Dairy J 65:5–13.

    Google Scholar 

  • Li N, Richoux R, Boutinaud M, Martin P (2014) Role of somatic cells on dairy processes and products: a review. Dairy Sci Technol 34:517–538

    Article  CAS  Google Scholar 

  • Ma Y, Ryan C, Barbano DM, Galton DM, Rudan MA, Boor KJ (2000) Effects of somatic cell count on quality and shelf life of pasteurized fluid milk. J Dairy Sci 83:254–274.

    Google Scholar 

  • McSweeney PLH, Fox PF, Olson NF (1995) Proteolysis of bovine caseins by cathepsin D: preliminary observations and comparison with chymosin. Int Dairy J 5:321–336

    Article  CAS  Google Scholar 

  • Magboul AAA, Larsen LB, McSweeney PLH, Kelly AL (2001) Cysteine protease activity in bovine milk. Int Dairy J 11:865–872

    Article  CAS  Google Scholar 

  • Marino R, Considine T, Sevi A, McSweeney PLH, Kelly AL (2005) Contribution of proteolytic activity associated with somatic cells in milk to cheese ripening. Int Dairy J 15:1026–1033.

    Google Scholar 

  • Martí-De Olives A, Navarro-Ríos MJ, Rubert-Alemán J, Fernández N, Molina MP (2015) Composition, proteolysis indices and coagulating properties of ewe milk as affected by bulk tank somatic cell count. J Dairy Res. 82(3):344–349

    Google Scholar 

  • Mattiello CA, Silveira SM, Carli F, Cunha A, Alessio DRM, Pelizza A, Cardozo LL, Neto AT (2018) Industrial yield, manufacturing efficiency and physical and chemical characteristics of colonial cheese produced from milk with two levels of somatic cells. A`rquivo Brasileiro De Dedicine Veterinaria E Zootecnia 70:1916–1924

    Google Scholar 

  • Molinari CE, Casadio YS, Hartmann BT, Livk A, Bringans S, Arthur PG, Hartmann PE (2012) Proteome mapping of human skim milk proteins in term and preterm milk. J Proteome Res 11:1696–1714

    Article  CAS  PubMed  Google Scholar 

  • Moussaoui F, Vangroenweghe H, Haddadi K, Le Roux Y, Laurent F, Duchateau L, Burvenich C (2004) Proteolysis in milk during experimental Escherichia coli mastitis. J Dairy Sci 87:2923–2931

    Google Scholar 

  • Moussaoui F, Laurent F, Girardet JM, Humbert G, Gaillard JL, Le Roux Y (2003) Characterization and proteolytic origins of specific peptides appearing during lipopolysaccharide experimental mastitis. J Dairy Sci 86:1163–1170

    Google Scholar 

  • Michelutti I, Haddadi K, Le Roux Y (2007) Staphylococcus aureus related mammary infection in cows: correlation between somatic cell count and proteolysis during early and chronic phase of lactation. J Animal Feed Sci 16:117–129

    Google Scholar 

  • Naughton AS, Sanger F (1961) Purification and specificity of pancreatic elastase. Biochem J 78:156–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen SD, Beverly RL, Dallas DC (2017a) Milk proteins are predigested within the human mammary gland. J Mammary Gland Biol Neoplasia 22:251–261

    Article  PubMed  Google Scholar 

  • Nielsen SD, Beverly RL, Dallas DC (2017b) Peptides released from foremilk and hindmilk proteins by breast milk proteases are highly similar. Front Nutr 4.

    Google Scholar 

  • Nielsen SD, Beverly RL, Qu YY, Dallas DC (2017c) Milk bioactive peptide database: a comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem 232:673–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen SD, Beverly RL, Underwood MA, Dallas DC (2018) Release of functional peptides from mother’s milk and fortifier proteins in the premature infant stomach. PLoS One 13:e0208204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Driscoll BM, Rattray FP, McSweeney PLH, Kelly AL (1999) Protease activities in raw milk using a synthetic heptapeptide substrate. J Food Sci 64:606–611

    Article  Google Scholar 

  • Pinto G, Caira S, Nicolai MA, Mauriello R, Cuollo M, Pirisi A, Piredda G, Chianese L, Addeo F (2013) Proteolysis and partial dephosphorylation of casein are affected by high somatic cell counts in sheep milk. Food Res Int 53:510–521.

    Google Scholar 

  • Peeters G, Verbeke R, Houvenaghel A, Reynaert R (1976) Isolation of kallikrein from mammary gland of cows. Q J Exp Physiol Cogn Med Sci 61:1–14

    CAS  PubMed  Google Scholar 

  • Rogers SA, Mitchell, GE (1994) The relationship between somatic cell count, composition and manufacturing properties of bulk milk. 69. Cheddar cheese and skim milk yogurt. Aust J Dairy Technol 49:70–74

    Google Scholar 

  • Recklies AD, Mort JS (1985) Rat mammary gland in culture secretes a stable high molecular weight for of cathepsin L. Biochem Biophys Res Commun 131(1):402–407

    Article  CAS  PubMed  Google Scholar 

  • Reimerdes EH, Petersen F, Kielwein G (1979) Milchproteinasen 9. Proteinasespektren von Caseinmicellen, milchserum, Rinderblutserum und Pseudomonas flourescens. Milchwissenschaft 34:548–551

    CAS  Google Scholar 

  • Saeman AI, Verdi RJ, Galton DM, Barbano DM (1988) Effect of mastitis on proteolytic activity in bovine milk. J Dairy Sci 71:505–512

    Google Scholar 

  • Santos MV, Ma Y, Barbano DM (2003) Effect of somatic cell count on proteolysis and lipolysis in pasteurized fluid milk during shelf-life storage. J Dairy Sci 86:2491–2503.

    Google Scholar 

  • Santillo A, Kelly AL, Palermo C, Sevia A, Albenzio M (2009) Role of indigenous enzymes in proteolysis of casein in caprine milk. Int Dairy J 19(11):655–660

    Google Scholar 

  • Sanchez-Machias D, Morales-De la Nunez A,Torres A, Hernandez-Castellano LE, Jiminez-Flores R, Castro N, Argguello A (2013) Effects of addition of somatic cells to caprine milk on cheese quality. Int Dairy J 29:61–67.

    Google Scholar 

  • Somers JM, O’Brien B, Meaney WJ, Kelly AL (2003) Heterogeneity of proteolytic enzyme activities in milk samples of different somatic cell count. J Dairy Res 70(45–5057):153–171

    Google Scholar 

  • Stepaniak L (2004) Dairy enzymology. Int J Dairy Technol 57:153–171

    Article  CAS  Google Scholar 

  • Sforza S, Cavatorta V, Lambertini F, Galaverna G, Dossena A, Marchelli R (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95(7):3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Katoh N (1990) Cysteine protease in bovine milk capable of hydrolysing casein as the substrate and elevation of the activity during the course of mastitis. Jap J Vet Sci 52:947–954

    Article  CAS  Google Scholar 

  • Talukder M, Ahmed HMM (2017) Effect of somatic cell count on dairy products: a review. Asian J Med Biol Res 3(1):1–9

    Article  Google Scholar 

  • Travis J, Fritz H (1991) Potential problems in designing elastase inhibitors for therapy. Am Rev Respir Dis 143:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama Y, Waguri S, Sato N, Watanabe T, Ishido K, Komonami E (1994) Review: cell and tissue distribution of lysosomal cysteine proteinases, cathepsins B, H and L, and their biological roles. Acta Histochem Cytochem 27(4):287–308

    Article  CAS  Google Scholar 

  • Verdi DJ, Barbano RM (1988) Preliminary Investigation of the Properties of Somatic Cell Proteases. J Dairy Sci 71(2):534–538

    Google Scholar 

  • Verdi RJ, Barbano D (1991) Properties of proteases from milk somatic cells and blood leukocytes. J Dairy Sci 74:2077–2081

    Article  CAS  PubMed  Google Scholar 

  • Vivar-Quintana AM, De La Mano EB, Revilla I (2006) Relationship between somatic cell counts and the properties of yoghurt made from ewes’ milk. Int Dairy J 16:262–267.

    Google Scholar 

  • Vijayakumar V, Guerrero AN, Davey N, Lebrilla CB, Shields DC, Khaldi N (2012) Enzymepredictor: a tool for predicting and visualizing enzymatic cleavages of digested proteins. J Proteome Res 11:6056–6065

    Article  CAS  PubMed  Google Scholar 

  • Vianna PCB, Mazal G, Santos MV, Bolini HMA, Gigante ML (2008) Microbial and sensory changes throughout the ripening of Prato cheese made from milk with different levels of somatic cells. J Dairy Sci 91:1743–1750

    Google Scholar 

  • Watorek W, van Halbeek H, Travis J (1993) The isoforms of human neutrophil elastase and cathepsin G differ in their carbohydrate side chain structures. Biol Chem 374:383–393

    Google Scholar 

  • Wedholm A, Møller HS, Lindmark-MÃ¥nsson H, Rasmussen MD, Andrén A, Larsen LB (2008). Identification of peptides in milk as a result of proteolysis at different levels of somatic cell counts using LC MALDI MS/MS detection. J Dairy Res. 75(1):76–83

    Google Scholar 

  • Wickramasinghe S, Rincon G, Islas-Trejo A, Medrano JF (2012). Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 13:45–59

    Google Scholar 

  • Wickström E, Persson-Waller K, Lindmark-MÃ¥nsson H, Ostensson K, Sternesjö A (2009) Relationship between somatic cell count, polymorphonuclear leucocyte count and quality parameters in bovine bulk tank milk. J Dairy Res. 76(2):195–201

    Google Scholar 

  • Wiederanders B, Brömme D, Kirschke H, von Figura KV, Schmidt B, Peters C (1992) Phylogenitic conservation of cysteine proteinases. J Biol Chem 267(19):13708–13713

    Article  CAS  PubMed  Google Scholar 

  • Wittlin S, Rösel J, Hofman F, Stover DR (1999) Mechanisms and kinetics of procathepsin D activation. Eur J Biochem 265:384–393

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa S, Tanaka T, Miyauche T (1987) Cathepsin E from rat neutrophils: its properties and possible relations to cathepsin D-like and cathepsin E-like acid proteinases. Arch Biochem Biophys 256:499–508

    Article  CAS  PubMed  Google Scholar 

  • Zachos T, Politis I, Gorewit R, Barbano D (1992) Effect of mastitis on plasminogen activator activity of milk somatic cells. J Dairy Res 59(4):461–467

    Google Scholar 

  • Zeece MG, Woods TL, Keen MA, Reville WJ (1992) Role of proteinases and inhibitors in post-mortem muscle protein degradation. In: Proceedings of the 45th Reciprocal Meat Conference, Colorado. National Liverstock and Meat Board, Chicago, pp 51–61

    Google Scholar 

  • Zeitlin IJ, Eshraghi HR (2002) The release and vascular action of bradykinin in the isolated perfused bovine udder. J Physiol 543:221–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Boeren S, van Hooijdonk ACM; Vervoort, JM; Hettinga, KA (2015) A proteomic perspective on the changes in milk proteins due to high somatic cell count. J Dairy Sci 98(8):5339–5351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotte Bach Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsen, L.B., Nielsen, S.DH., Paludetti, L., Kelly, A.L. (2021). Lysosomal and Other Indigenous Non-plasmin Proteases in Bovine Milk. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_3

Download citation

Publish with us

Policies and ethics