Skip to main content

Enzymes in Cheese Ripening

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

Abstract

This comprehensive review discusses crucial enzymes involved in cheese ripening, from the first attacks on lactose, casein and fat to the final formation of aroma compounds. A critical evaluation of scientific results obtained worldwide over several decades reveals a high number of important enzymatic pathways that could be possible to influence during cheese-making. Some examples of the activities described follow. Different mechanisms of primary proteolysis in cheese produced with coagulants of different sources influence cheese texture and flavour differently. Enhanced plasmin activity increases the total amount of free amino acids in cheese indirectly by producing peptides for further microbial processing. Enzymes catalyse formation of γ-glutamic acid peptides that contribute to umami and kokumi sensations. The activity of several hydrolytic enzymes, e.g., esterases, phosphatases and peptidases show a reversal of activity in long-ripened cheeses with very low water activity, and so they produce water molecules instead of using them, and in these reactions specific flavour compounds are formed. Low redox potential and lack of oxidised cofactors in cheese limit enzymatic activities involved in formation of flavour compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamberg K, Antonsson M, Vogensen FK, Nielsen EW, Kask S, Møller PL, Ardö Y (2005) Fermentation of carbohydrates from cheese sources by non-starter lactic acid bacteria isolated from semi-hard Danish cheese. Int Dairy J 15:873–882

    Article  CAS  Google Scholar 

  • Andersen LT (2009) A chemical and sensory study of water-soluble compounds in mature Cheddar cheese with savoury flavour. Ph.D. thesis, University of Copenhagen

    Google Scholar 

  • Andrén A, von Reedtz C (1990) Effects of chromatographically pure bovine chymosin and pepsin a on cheese curd firmness. J Dairy Res 57:109–117

    Article  Google Scholar 

  • Andrews AT, Alichanidis E (1975) Acid phosphatase activity in cheese and starters. J Dairy Res 42:327–339

    Article  CAS  PubMed  Google Scholar 

  • Antonsson M, Molin G, Ardö Y (2003a) Proteolysis of the semi-hard cheese Herrgård made at different dairies. Exploratory study. Milchwissenshaft 58:145–148

    CAS  Google Scholar 

  • Antonsson M, Molin G, Ardö Y (2003b) Lactobacillus strains isolated from Danbo cheese and their function as adjunct cultures in a cheese model system. Int J Food Microbiol 85:159–169

    Article  CAS  PubMed  Google Scholar 

  • Ardö Y (1993) Characterizing ripening in low-fat, semi-hard round-eyed cheese made with undefined mesophilic DL-starter. Int Dairy J 3:343–357

    Article  Google Scholar 

  • Ardö Y (2004) Semi-hard Scandinavian cheeses made with mesophilic DL-starter. In: Handbook of food and beverage fermentation technology. Marcel Dekker, Inc., New York, pp 277–290

    Google Scholar 

  • Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238–242

    Article  PubMed  CAS  Google Scholar 

  • Ardö Y, Pettersson H-E (1988) Accelerated cheese ripening with heat treated cells of Lactobacillus helveticus and a commercial proteolytic enzyme. J Dairy Res 55:239–245

    Article  Google Scholar 

  • Ardö Y, Larsson P-O, Lindmark Månsson H, Hedenberg A (1989) Studies of peptidolysis during early maturation and its influence on low-fat cheese quality. Milchwissenschaft 44:485–490

    Google Scholar 

  • Ardö Y, Lindblad O, Qvist KB (1999) Study of methods to monitor heat load to cheese milk. Int Dairy J 9:547–552

    Article  Google Scholar 

  • Ardö Y, Thage BV, Madsen JS (2002) Dynamics of free amino acid composition in cheese ripening. Aust J Dairy Technol 57:109–115

    Google Scholar 

  • Ardö Y, Lilbæk H, Kristiansen KR, Zakora M, Otte J (2007) Identification of large phosphopeptides from β-casein that characteristically accumulate during ripening of the semi-hard cheese Herrgård. Int Dairy J 17:513–524

    Article  CAS  Google Scholar 

  • Ardö Y, Pripp AH, Lillevang SK (2009) Impact of heat-treated Lactobacillus helveticus on bioactive peptides in low-fat, semi-hard cheese. Aust J Dairy Technol 64:58–62

    Google Scholar 

  • Ardö Y, McSweeney PLH, Magboul AAA, Upadhyay VK, Fox PF (2017) Biochemistry of cheese ripening: proteolysis. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW (eds) Cheese: chemistry, physics and microbiology, 4th edn. Academic, London, pp 446–482

    Google Scholar 

  • Arnau J, Hjerl-Hansen E, Israelsen H (1997) Hetreologous gene expression of bovine plasmin in Lactcoccus lactis. Appl Microbiol Biotechnol 48:331–338

    Article  CAS  PubMed  Google Scholar 

  • Barrett FM, Kelly AL, McSweeney PLH, Fox PF (1999) Use of exogenous urokinase to accelerate proteolysis in Cheddar cheese during ripening. Int Dairy J 9:421–427

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products. Int Dairy J 6:435–457

    Article  CAS  Google Scholar 

  • Battistotti B, Corradini C (1993) Italian cheese. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, vol 2, 2nd edn. Chapman and Hall, London, pp 221–243

    Chapter  Google Scholar 

  • Benfeldt C (1997) Proteolyse og ostemodning. Ph.D. thesis, Institut for Molekylær og Strukturel Biologi, Århus universitet

    Google Scholar 

  • Bie R, Sjöström G (1975a) Autolytic properties of some lactic acid bacteria used in cheese production. Part I. Material and methods. Milchwissenschaft 30:653–657

    CAS  Google Scholar 

  • Bie R, Sjöström G (1975b) Autolytic properties of some lactic acid bacteria used in cheese production. Part II. Experiments with fluid substrate and cheese. Milchwissenschaft 30:739–747

    CAS  Google Scholar 

  • Birschbach P (1994) Origins of lipases and their characteristics. Bulletin of the International Dairy Federation No. 294, pp 7–10

    Google Scholar 

  • Børsting MW, Qvist KB, Rasmussen M, Vindeløv J, Vogensen FK, Ardö Y (2012) Influence of proteolysis and amino acid release on bitterness and structure of reduced-fat Cheddar. Dairy Sci Technol 92:593–612

    Article  CAS  Google Scholar 

  • Børsting MW, Qvist KB, Brockmann E, Vindeløv J, Pedersen TL, Vogensen FK, Ardö Y (2015) Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modelling. J Dairy Sci 98:68–77

    Article  PubMed  CAS  Google Scholar 

  • Broadbent JR, Rodriguez BT, Joseph P, Smith EA, Steele JL (2006) Conversion of Lactococcus lactis cell envelope proteinase specificity by partial allele exchange. J Appl Microbiol 100:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Broadbent J, Cai H, Larsen RL, Hughes JE, Welker DL, de Carvalho VG, Tompkins TA, Ardö Y, Vogensen FK, de Lorentiis A, Gatti M, Neviani E, Steele JL (2011) Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J Dairy Sci 94:4313–4328

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Jaeggi JJ, Johnson ME (1994) Comparative study of protease from Rhizomucor miehei expressed in Aspergillus oryzae and other milk coagulants in Cheddar cheese making, yield and quality. J Dairy Sci 77(Suppl 1):14 (abstr)

    Google Scholar 

  • Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217–246

    Article  CAS  PubMed  Google Scholar 

  • Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, 2nd edn, vol 1. Chapman and Hall, London, pp 193–256

    Chapter  Google Scholar 

  • Collin JC, Berdagué JL, Dognin-Bergeret M, Grappin R (1987) Affinage et qualité du Gruyère de Comté. IV. Etude de la protéolyse. Lait 67:299–318

    Article  CAS  Google Scholar 

  • Creamer LK (1975) β-Casein degradation in Gouda and Cheddar cheese. J Dairy Sci 58:287–292

    Google Scholar 

  • Drohse HB, Foltmann B (1989) Specificity of milk-clotting enzymes towards bovine κ-casein. Biochim Biophys Acta 995:221–224

    Article  CAS  PubMed  Google Scholar 

  • Exterkate FA, Alting AC, Bruinenberg PG (1993) Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl Environ Microbiol 59:3640–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkye N, Fox PF (1990) Observations on plasmin activity in cheese. J Dairy Res 57:443–448

    Article  Google Scholar 

  • Fernandez-Espla MD, Garault P, Monnet V, Rul F (2000) Streptococcus thermophilus cell-wall-anchored proteinase: release, purification and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterisation and biotechnological applications. Biotechnol Adv 29:632–644

    Article  CAS  PubMed  Google Scholar 

  • Frantzen CA, Kot W, Pedersen TB, Ardö Y, Broadbent JR, Neve H, Hansen LH, Dal Bello F, Vogensen FK, Holo H (2017) Genomic characterization of dairy associated Leuconostoc species and diversity of leuconostocs in undefined mixed mesophilic starter cultures. Front Microbiol 8:Article 132

    Article  PubMed  Google Scholar 

  • Hedlund U, Ludvigsen R (2005) Effect of proteolytic activities of cardosin A and B on texture and flavour of low-fat Cheddar cheese. M.Sc. Thesis, University of Copenhagen

    Google Scholar 

  • Hillmann H, Behr J, Ehrmann MA, Vogel RF, Hofmann T (2016) Formation of kokumi-enhancing γ-glutamyl dipeptides in parmesan cheese by means of γ-glutamyltransferase activity and stable isotope double-labeling studies. J Agric Food Chem 64:1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Jensen MP, Ardö Y (2010) Variation in aminopeptidase and aminotransferase activities of six cheese related Lactobacillus helveticus strains. Int Dairy J 20:149–155

    Article  CAS  Google Scholar 

  • Jensen MP, Vogensen FK, Ardö Y (2009) Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Int Dairy J 19:661–668

    Article  CAS  Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon J-C, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kananen S (2013) Amino acid catabolism by Lactobacilus helveticus. Understanding the influence of strain variation on flavor formation. Ph.D. thesis, University of Copenhagen

    Google Scholar 

  • Kappeler SR, van den Brink HJM, Rahbek-Nielsen H, Farah Z, Hansen EB, Johansen E (2006) Characerisation of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Int Dairy J 16:623–632

    Article  CAS  Google Scholar 

  • Kilcawley KN, Wilkinson MG, Fox PF (2002) Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzym Microb Technol 31:310–320

    Article  CAS  Google Scholar 

  • Larsen LB, Wium H, Benfeldt C, Heegaard CW, Ardö Y, Qvist KB, Petersen TE (2000) Bovine milk procathepsin D: presence and activity in heated milk and in extracts of rennet-free UF-feta cheese. Int Dairy J 10:67–73

    Article  CAS  Google Scholar 

  • Larsson M, Zakora M, Dejmek P, Ardö Y (2006) Primary proteolysis studied in a cast cheese from microfiltered milk. Int Dairy J 16:623–632

    Article  CAS  Google Scholar 

  • Law BA (1979) Reviews of the progress of dairy science: enzymes of psychrotrophic bacteria and their effects on milk and milk products. J Dairy Res 46:573–588

    Article  CAS  Google Scholar 

  • Law BA, Wigmore AS (1983) Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from starter streptococci. J Dairy Res 50:519–525

    Article  CAS  Google Scholar 

  • Lund M, Ardö Y (2004) Purification and identification of water soluble phosphopeptides from cheese using Fe(III) affinity chromatography and mass spectrometry. J Agric Food Chem 52:6616–6622

    Article  CAS  PubMed  Google Scholar 

  • Macedo IQ, Faro CJ, Pires EV (1996) Caseinolytic specificity of cardosin, an aspartic protease from the cardoon Cynara cardunculus L: action on bovine αs- and β-casein and comparison with chymosin. J Agric Food Chem 44:42–47

    Article  CAS  Google Scholar 

  • Madsen JS, Ardö Y (2001) Exploratory study of proteolysis, rheology and sensory properties of Danbo cheese with different fat contents. Int Dairy J 11:423–431

    Article  CAS  Google Scholar 

  • Martin P, Collin J-C, Garnot P, Dumas BR, Mocquot G (1981) Evaluation of bovine rennets in terms of absolute concentrations of chymosin and pepsin A. J Dairy Res 48:447–456

    Article  CAS  Google Scholar 

  • Masotti F, Hogenboom JA, Rosi V, de Noni I, Pellegrino L (2010) Proteolysis indices related to cheese ripening and typicalness in PDO Grana Padano cheese. Int Dairy J 20:352–359

    Google Scholar 

  • McSweeney PMS, Fox PF (2004) Metabolism of residual lactose and of lactate and citrate. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, General aspects, vol 1, 3rd edn. Chapman & Hall, London, pp 361–371

    Google Scholar 

  • Michaelidou A, Alichanidis E, Urlaub H, Polychroniadou A, Zerfiridis GK (1998) Isolation and identification of some major water-soluble peptides in feta cheese. J Dairy Sci 81:3109–3116

    Article  CAS  PubMed  Google Scholar 

  • Møller KK, Rattray FP, Ardö Y (2012a) Camel and bovine chymosin hydrolysis of bovine αS1- and β-caseins studied by comparative peptide mapping. J Agric Food Chem 60:11421–11432

    Article  PubMed  CAS  Google Scholar 

  • Møller KK, Rattray FP, Høier E, Ardö Y (2012b) Manufacture and biochemical characteristics during ripening of Cheddar cheese with variable NaCl and equal moisture content. Dairy Sci Technol 92:543–568

    Google Scholar 

  • Møller KK, Rattray FP, Ardö Y (2013) Application of selected lactic acid bacteria and coagulants for improving the quality of low-salt Cheddar cheese: chemical, microbiological and rheological evaluation. Int Dairy J 33:163–174

    Article  CAS  Google Scholar 

  • Mucchetti G, Locci F, Gatti M, Neviani E, Addeo F, Dossena A, March R (2000) Pyroglutamic acid in cheese: presence, origin, and correlation with ripening time of Grana Padano cheese. J Dairy Sci 83:659–665

    Article  CAS  PubMed  Google Scholar 

  • Mulvihill DM, Fox PF (1977) Proteolysis of αs1-casein by chymosin: influence of pH and urea. J Dairy Res 44:533–540

    Article  CAS  Google Scholar 

  • Mulvihill DM, Fox PF (1979) Proteolytic specificity of chymosins and pepsins on β-casein. Milchwissenschaft 34:680–683

    CAS  Google Scholar 

  • Oberg CJ, Broadbent JR, Strickland M, McMahon DJ (2002) Diversity in specificity of extracellular Lactobacillus helveticus and Lactobacillus delbruckii subsp. bulgaricus. Lett Appl Microbiol 34:455–560

    Google Scholar 

  • Oberg CJ, Oberg TS, Culumber MD, Ortakci F, Broadbent JR, McMahon DJ (2016) Lactobacillus wasatchensis sp. Nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int J Syst Evol Microbiol 66:158–164

    Article  CAS  PubMed  Google Scholar 

  • Ollikainen P, Kivelä T (1989) The importance of plasmin in Swiss-type cheese ripening. Milchwissenschaft 44:204–206

    CAS  Google Scholar 

  • Pedersen TB, Ristagno D, McSweeney PLH, Vogensen FK, Ardö Y (2013) Potential impact on cheese flavour of heterofermentative bacteria from starter cultures. Int Dairy J 33:112–119

    Article  CAS  Google Scholar 

  • Pettersson H-E, Sjöström G (1975) Accelerated cheese ripening: a method for increasing the number of lactic starter bacteria in cheese without detrimental effect to the cheese making process, and its effect on the cheese ripening. J Dairy Res 42:313–326

    Article  CAS  Google Scholar 

  • Rea DM (1997). Comparison of Cheddar cheese made with chymosin, Rhizomucor miehei proteinase or Cryphonectria parasitica proteinase. M.Sc. thesis, National University of Ireland, Cork

    Google Scholar 

  • Rehn U, Petersen MA, Hallin Saedén K, Ardö Y (2010) Ripening of extra hard cheese made with mesophilic DL-starter. Int Dairy J 20:844–851

    Article  CAS  Google Scholar 

  • Risborg SS and Witt SM (2013) Investigation of the proteolytic activity of five commercially used coagulants by CE and RP-HPLC-MS/MS. M.Sc. thesis, University of Copenhagen

    Google Scholar 

  • Rogelj I, Perko B, Francky A, Penca V, Pungercar J (2001) Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J Dairy Sci 84:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Roudot-Algaron F, Kerhoas I, Le Bars D, Einhorn J, Gripon J-C (1994) Isolation of γ-glutamyl peptides from Comté cheese. J Dairy Sci 77:1161–1166

    Article  CAS  Google Scholar 

  • Sforza S, Cavatorta V, Galaverna G, Dossena A, Marchelli R (2009) Accumulation of non-proteolytic aminoacyl derivatives in Parmigiano Reggiano cheese during ripening. Int Dairy J 19:582–587

    Article  CAS  Google Scholar 

  • Siezen R (1999) Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie Van Leeuwenhoek 76:139–155

    Article  CAS  PubMed  Google Scholar 

  • Skeie S, Ardö Y (2000) Influence from raw milk flora on cheese ripening studied by different treatments of milk to model cheese. Lebensmittel -Wissenshaft und -Technology 33:499–505

    Article  CAS  Google Scholar 

  • Skeie S, Narvhus JA, Ardö Y, Thorvaldsen K, Abrahamsen R (1997) Influence of reduced salt content on the function of liposome-encapsulated Neutrase and heat-treated lactobacilli in rindless low-fat cheese. Lait 77:575–585

    Article  CAS  Google Scholar 

  • Smeianov VV, Wechter P, Broadbent JR, Hughes JE, Rodryguez BT, Christensen TK, Ardö Y, Steele JL (2007) Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl Environ Microbiol 73:2661–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa MJ, Ardö Y, McSweeney PLH (2001) Advances in the study of proteolysis during cheese ripening. Int Dairy J 11:327–345

    Article  CAS  Google Scholar 

  • Stadhouders J, Mulder H (1957) Fat hydrolysis and cheese flavour. Neth Milk Dairy J 11:164–183

    CAS  Google Scholar 

  • Taivosalo A, Kriščiunaite T, Seiman A, Part N, Stulova I, Vilu R (2017) Comprehensive analysis of proteolysis during 8 months of ripening of high-cooked old Saare cheese. J Dairy Sci 101:944–967

    Article  PubMed  CAS  Google Scholar 

  • Tan PST, Poolman B, Konings WN (1993) Proteolytic enzymes of Lactococcus lactis. J Dairy Res 60:269–286

    Article  PubMed  Google Scholar 

  • Thage BV, Houlberg U, Ardö Y (2004) Amino acid transamination in permeabilised cells of Lactobacillus helveticus, Lb. paracasei and Lb. danicus. J Dairy Res 71:461–470

    Article  CAS  PubMed  Google Scholar 

  • Thierry A, Collins YF, Mukdsi MCA, McSweeney PLH, Wilkinson MG, Spinnler HE (2017) Lipolysis and metabolism of fatty acids in cheese. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW (eds) Cheese: chemistry, physics and microbiology, 4th edn. Academic, London, pp 423–444

    Chapter  Google Scholar 

  • Tynkkynen S, Buist G, Kunji ERS, Kok J, Poolman B, Venema G, Haandrikman AJ (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 175:7529–7532

    Article  Google Scholar 

  • Upadhyay VK, Ravn P, Israelsen H, Sousa MJ, Kelly AL, McSweeney PLH (2006) Acceleration of proteolysis during ripening of Cheddar type cheese using a streptokinase-producing strain of Lactococcus. J Dairy Res 73:70–73

    Google Scholar 

  • Urbach G (1993) Reletions between cheese flavour and chemical composition. Int Dairy J 3:389–422

    Article  CAS  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2012) A comparative analysis of recombinant chymosins. J Dairy Sci 95:609–613

    Article  CAS  PubMed  Google Scholar 

  • van Boekel MAJS, Crijns CL (1994) Behaviour of the proteose-peptone fraction during renneting of milk. Neth Milk Dairy J 48:117–126

    Google Scholar 

  • Waagner Nielsen E (2004) Principles of cheese productions. In: Handbook of food and beverage fermentation technology. Marcel Dekker, Inc., New York, pp 219–239

    Google Scholar 

  • Waagner Nielsen E, Edelsten D (1974) The hydrolysis of fat in blue cheese. XIX Int Dairy Congress 1E:252

    Google Scholar 

  • Weimer B, Seefeldt K, Dias B (1999) Sulphur metabolism in bacteria associated with cheese. Antonie Van Leeuwenhoek 76:247–261

    Article  CAS  PubMed  Google Scholar 

  • Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201

    Article  CAS  Google Scholar 

  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarell P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva Ardö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ardö, Y. (2021). Enzymes in Cheese Ripening. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_15

Download citation

Publish with us

Policies and ethics