Skip to main content

Multi-attribute Trajectory Data Management

  • Chapter
  • First Online:
Handbook of Big Geospatial Data
  • 1196 Accesses

Abstract

Motivated by the trend of enriching the knowledge about movement data, this chapter introduces representing and querying multi-attribute trajectories in a database system. Such a trajectory contains a sequence of time-stamped locations and a set of descriptive attributes. Multi-attribute trajectories mainly deal with attributes describing characteristics of objects, i.e., attributes that are not relevant to locations. This differs from semantic and activity trajectories in the literature that focus on location-dependent information. A range of novel queries are incurred that integrate both spatio-temporal data and attributes into the evaluation. To enhance the query performance, a hybrid and flexible index is developed to manage multi-attribute trajectories. Efficiently updating the structure is also presented. Query algorithms are proposed, accompanied with optimization strategies. Furthermore, the chapter introduces the system development, reports the performance evaluation and points out future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given three rectangles a, b, c, each contains a set of points inside. We aim to find the nearest point to a given point inside a. Let Max(b, a) and Min(c, a) denote the maximum and minimum distances between two rectangles. If Max(b, a) ≤ Min(c, a), then no point inside the rectangle c can be closer than a point in the rectangle b to a. As a consequence, we can omit c when searching for the nearest neighbor to a.

  2. 2.

    The space is contained by the node but there are few or no data objects. One can also call this dead space (Tao and Papadias 2001), meaning that the area will be evaluated but few objects are there or even no object exists.

References

  • Alvares LO, Bogorny V, Kuijpers B, Moelans B, Fern JA, Macedo ED, Palma AT (2007) Towards semantic trajectory knowledge discovery. Data Mining and Knowl Discov

    Google Scholar 

  • Bentley JL, Ottmann T (1979) Algorithms for reporting and counting geometric intersections. IEEE Trans Comput 28(9):643–647

    Article  MATH  Google Scholar 

  • Bercken J, Seeger B (2001) An evaluation of generic bulk loading techniques. In: VLDB, pp 461–470

    Google Scholar 

  • Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional index structures. In: VLDB, pp 406–415

    Google Scholar 

  • Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with seti. In: CIDR

    Google Scholar 

  • Chen Z, Tao Shen H, Zhou X, Zheng Y, Xie X (2010) Searching trajectories by locations: an efficiency study. In: SIGMOD, pp 255–266

    Google Scholar 

  • Chen L, Cong G, Jensen CS, Wu D (2013) Spatial keyword query processing: an experimental evaluation. PVLDB 6(3):217–228

    Google Scholar 

  • Cong G, Jensen CS, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1):337–348

    Google Scholar 

  • de Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. GeoInformatica 9(1):33–60

    Article  Google Scholar 

  • De Felipe I, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, pp 656–665

    Google Scholar 

  • Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: part 2 (2003–2010). IEEE Data Eng Bull 33(2):46–55

    Google Scholar 

  • Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. In: SIGMOD, pp 319–330

    Google Scholar 

  • Frentzos E (2003) Indexing objects moving on fixed networks. In: SSTD, pp 289–305

    Google Scholar 

  • Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2005) Nearest neighbor search on moving object trajectories. In: SSTD, pp 328–345

    Google Scholar 

  • Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2007) Algorithms for nearest neighbor search on moving object trajectories. GeoInformatica 11(2):159–193

    Article  Google Scholar 

  • Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann, Amsterdam

    MATH  Google Scholar 

  • Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM TODS 25(1):1–42

    Article  Google Scholar 

  • Güting RH, Behr T, Düntgen C (2010a) SECONDO: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng Bull 33(2):56–63

    Google Scholar 

  • Güting RH, Behr T, Xu J (2010b) Efficient k-nearest neighbor search on moving object trajectories. VLDB J 19(5):687–714

    Article  Google Scholar 

  • Güting RH, Valdés F, Damiani ML (2015) Symbolic trajectories. ACM Trans Spat Algorithms Syst 1(2):Article 7

    Google Scholar 

  • Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. In: EDBT, pp 251–268

    Google Scholar 

  • Han Y, Wang L, Zhang Y, Zhang W, Lin X (2015) Spatial keyword range search on trajectories. In: DASFAA, pp 223–240

    Google Scholar 

  • Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: SSTD, pp 208–227

    Google Scholar 

  • Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008) Discovery of convoys in trajectory databases. PVLDB 1(1):1068–1080

    Google Scholar 

  • Lange R, Dürr F, Rothermel K (2011) Efficient real-time trajectory tracking. VLDB J 20(5):671–694

    Article  Google Scholar 

  • Lee T, Park J, Lee S, et al (2015) Processing and optimizing main memory spatial-keyword queries. PVLDB 9(3):132–143

    Google Scholar 

  • Long C, Wong RCW, Jagadish HV (2013) Direction-preserving trajectory simplification. PVLDB 6(10):949–960

    Google Scholar 

  • Lu H, Cao X, Jensen CS (2012) A foundation for efficient indoor distance-aware query processing. In: ICDE, pp 438–449

    Google Scholar 

  • Mauroux PC, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp 109–120

    Google Scholar 

  • Parent C, Spaccapietra S, Renso C, Andrienko GL, Andrienko NV, Bogorny V, Damiani ML, Gkoulalas-Divanis A, de Macêdo JAF, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):42

    Article  Google Scholar 

  • Pelanis M, Saltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM TODS 31(1):255–298

    Article  Google Scholar 

  • Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: GIS, pp 25–32

    Google Scholar 

  • Pfoser D, Jensen CS (2000) Novel approaches in query processing for moving object trajectories. In: VLDB, pp 395–406

    Google Scholar 

  • Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M CRAWDAD dataset epfl/mobility (v. 24 Feb 2009). http://crawdad.org/epfl/mobility/20090224

  • Popa IS, Zeitouni K, Oria V, Barth D, Vial S Indexing in-network trajectory flows. VLDB J 20(5):643–669 (2011)

    Article  Google Scholar 

  • Rasetic S, Sander J, Elding J, Nascimento MA (2005) A trajectory splitting model for efficient spatio-temporal indexing. In: VLDB, pp 934–945

    Google Scholar 

  • Song Z, Roussopoulos N (2003) Seb-tree: an approach to index continuously moving objects. In: MDM, pp 340–344

    Google Scholar 

  • Su Y, Wu Y, Chen ALP (2007) Monitoring heterogeneous nearest neighbors for moving objects considering location-independent attributes. In: DASFAA, pp 300–312

    Google Scholar 

  • Su H, Zheng K, Zeng K, Huang J, Sadiq SW, Yuan NJ, Zhou X (2015) Making sense of trajectory data: a partition-and-summarization approach. In: ICDE, pp 963–974

    Google Scholar 

  • Tao Y, Papadias D (2001) Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In: VLDB, pp 431–440

    Google Scholar 

  • Tong Y, Chen Y, Zhou Z, Chen L, Wang J, Yang Q, Ye J, Lv W (2017) The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: ACM SIGKDD, pp 1653–1662

    Google Scholar 

  • Tong Y, Zeng Y, Zhou Z, Chen L, Ye J, Xu K (2018) A unified approach to route planning for shared mobility. PVLDB 11(11):1633–1646

    Google Scholar 

  • Tzoumas K, Yiu ML, Jensen CS (2009) Workload-aware indexing of continuously moving objects. PVLDB 2(1):1186–1197

    Google Scholar 

  • Valdés F, Güting RH (2014) Index-supported pattern matching on symbolic trajectories. In: ACM SIGSPATIAL, pp 53–62

    Google Scholar 

  • Valdés F, Güting RH (2017) Index-supported pattern matching on tuples of time-dependent values. GeoInformatica 21(3):429–458

    Article  Google Scholar 

  • Valdés F, Güting RH (2019) A framework for efficient multi-attribute movement data analysis. VLDB J 28(4):427–449

    Article  Google Scholar 

  • Wang H, Zimmermann R (2011) Processing of continuous location-based range queries on moving objects in road networks. IEEE Trans Knowl Data Eng 23(7):1065–1078

    Article  Google Scholar 

  • Wang W, Xu J (2017) A tool for 3d visualizing moving objects. In: APWeb-WAIM, pp 353–357

    Google Scholar 

  • Wang X, Zhang Y, Zhang W, Lin X, Huang Z (2016) SKYPE: top-k spatial-keyword publish/subscribe over sliding window. PVLDB 9(7):588–599

    Google Scholar 

  • Wei X, Xu J (2018) MDBF: a tool for monitoring database files. In: ER Workshops, pp 54–58

    Google Scholar 

  • Wu D, Yiu ML, Cong G, Jensen CS (2012) Joint top-k spatial keyword query processing. IEEE Trans Knowl Data Eng 24(10):1889–1903

    Article  Google Scholar 

  • Xu J, Güting RH (2012) Mwgen: a mini world generator. In: IEEE MDM, pp 258–267

    Google Scholar 

  • Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–172

    Article  Google Scholar 

  • Xu J, Güting RH (2017) Query and animate multi-attribute trajectory data. In: ACM CIKM, pp 2551–2554

    Google Scholar 

  • Xu J, Güting RH, Qin X (2015a) Gmobench: benchmarking generic moving objects. GeoInformatica 19(2):227–276

    Article  Google Scholar 

  • Xu J, Güting RH, Zheng Y (2015b) The TM-RTree: an index on generic moving objects for range queries. GeoInformatica 19(3):487–524

    Article  Google Scholar 

  • Xu J, Güting RH, Gao Y (2018a) Continuous k nearest neighbor queries over large multi-attribute trajectories: a systematic approach. GeoInformatica 22(4):723–766

    Article  Google Scholar 

  • Xu J, Lu H, Güting RH (2018b) Range queries on multi-attribute trajectories. IEEE Trans Knowl Data Eng 30(6):1206–1211

    Article  Google Scholar 

  • Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) Semitri: a framework for semantic annotation of heterogeneous trajectories. In: EDBT, pp 259–270

    Google Scholar 

  • Yao B, Xiao X, Li F, Wu Y (2014) Dynamic monitoring of optimal locations in road network databases. VLDB J 23(5):697–720

    Article  Google Scholar 

  • Zhang C, Han J, Shou L, Lu J, La Porta TF (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. PVLDB 7(9):769–780

    Google Scholar 

  • Zheng K, Su H (2015) Go beyond raw trajectory data: quality and semantics. IEEE Data Eng Bull 38(2):27–34

    Google Scholar 

  • Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer, New York

    Book  Google Scholar 

  • Zheng K, Shang S, Yuan NJ, Yang Y (2013a) Towards efficient search for activity trajectories. In: ICDE, pp 230–241

    Google Scholar 

  • Zheng K, Zheng Y, Yuan NJ, Shang S (2013b) On discovery of gathering patterns from trajectories. In: ICDE, pp 242–253

    Google Scholar 

  • Zheng B, Yuan NJ, Zheng K, Xie X, Sadiq SW, Zhou X (2015) Approximate keyword search in semantic trajectory database. In: ICDE, pp 975–986

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC under grants 61972198, Natural Science Foundation of Jiangsu Province of China under grants BK20191273 and National Key Research and Development Plan of China (2018YFB1003902). Thanks Weiwei Wang for developing the 3-D visualization tool and Xiangyu Wei for developing the monitoring tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J. (2021). Multi-attribute Trajectory Data Management. In: Werner, M., Chiang, YY. (eds) Handbook of Big Geospatial Data. Springer, Cham. https://doi.org/10.1007/978-3-030-55462-0_9

Download citation

Publish with us

Policies and ethics