Skip to main content

Semantic Graphs to Reflect the Evolution of Geographic Divisions

  • 672 Accesses

Abstract

Nowadays, the volume of data coming from the public sector is growing rapidly on the Open Data Web. Most of these data come from governmental agencies such as Statistical and Mapping Agencies. Together, these public institutions publish territorial statistics that are of utmost importance for policy-makers to conduct various analyses of their jurisdiction, in time and space, and observe its evolution over time. However, through times, all over the world, the geographic divisions that serve as a reference for recording territorial statistical values, are subject to change: their name, their belonging or their boundaries change for political or administrative reasons and at several subdivision levels (e.g., regions, districts, sub-districts). These changes lead to breaks in time-series and are source of both misinterpretations, and statistical biases when not properly documented. In this chapter, we investigate solutions relying on the Semantic Web technologies for the description of the evolution of geographic divisions over time. We investigate how these technologies may enhance the understanding of the territorial dynamics over time, providing statisticians, researchers, citizens with well-documented descriptions of territorial changes to conduct various analyses of the territories.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55462-0_6
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55462-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5

Notes

  1. 1.

    https://ec.europa.eu/digital-single-market/en/open-data

  2. 2.

    https://opendata.swiss/

  3. 3.

    https://www.data.gov/

  4. 4.

    https://data.europa.eu/euodp/en/home?

  5. 5.

    The European Statistical Office that provides official statistics to the NSAs of the European Union member states.

  6. 6.

    http://ec.europa.eu/eurostat/web/nuts/overview

  7. 7.

    For instance, the REST SDMX API of Eurostat gives access to the Eurostat data (https://ec.europa.eu/eurostat/web/sdmx-web-services/rest-sdmx-2.1

  8. 8.

    https://www.opengeospatial.org/standards/wfs

  9. 9.

    https://www.opengeospatial.org/standards/wms

  10. 10.

    https://www.opengeospatial.org/standards/cat

  11. 11.

    https://www.w3.org/2015/spatial/wiki/Main_Page

  12. 12.

    http://geotriples.di.uoa.gr/

  13. 13.

    https://www.w3.org/2015/spatial/wiki/Main_Page

  14. 14.

    https://www.w3.org/TR/owl-time/

  15. 15.

    http://www.opengeospatial.org/standards/geosparql

  16. 16.

    http://www.opengis.net/ont/geosparql#sfTouches

  17. 17.

    Available online from the Copernicus Web site https://land.copernicus.eu/pan-european/corine-land-cover

  18. 18.

    Please consult the nomenclature of CLC classes from the Copernicus Project Web site at https://land.copernicus.eu/Corinelandcoverclasses.eps.75dpi.png/

  19. 19.

    http://linkedearth.org/change/ns/

  20. 20.

    Law No 2015-29 of January 16th, 2015 https://www.legifrance.gouv.fr/eli/loi/2015/1/16/INTX1412841L/jo/texte

  21. 21.

    https://wiki.dbpedia.org/

  22. 22.

    https://www.wikidata.org/wiki/Wikidata:Main_Page

  23. 23.

    https://eur-lex.europa.eu/eli-register/about.html

References

  • Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843

    CrossRef  Google Scholar 

  • Anderson CW et al (2012) Quantitative methods for current environmental issues. Springer Science & Business Media, London

    Google Scholar 

  • Auer S, Lehmann J, Hellmann S (2009) LinkedGeoData: adding a spatial dimension to the web of data. In: Bernstein A et al (ed) The semantic web ISWC 2009: 8th international semantic web conference, ISWC 2009, Chantilly, 25–29 Oct 2009. Proceedings. Springer, Berlin/Heidelberg, pp 731–746. ISBN: 978-3-642-04930-9. https://doi.org/10.1007/978-3-642-04930-9_46

  • Batsakis S, Petrakis EGM (2011) SOWL: a framework for handling spatio-temporal information in OWL 2.0. In: International workshop on rules and rule markup languages for the semantic web. Springer, pp 242–249

    Google Scholar 

  • Batsakis S et al (2017) Temporal representation and reasoning in OWL 2. Semant Web 8(6):981–1000. https://doi.org/10.3233/SW-160248. Gangemi A (ed)

    CrossRef  Google Scholar 

  • Beller A (1991) Spatial/temporal events in a GIS. Proc GIS/LIS 91(57):4

    Google Scholar 

  • Bernard C et al (2018a) An ontology-based algorithm for managing the evolution of multi-level territorial partitions. In: Proceedings of the 26th ACM SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL’18, Seattle. ACM, Washington, pp 456–459. ISBN: 978-1-4503-5889-7. https://doi.org/10.1145/3274895.3274944

  • Bernard C et al (2018b) Modeling changes in territorial partitions over time: ontologies TSN and TSN-change. In: Proceedings of the 33rd annual ACM symposium on applied computing, SAC’18. ACM, Pau, pp 866–875. ISBN: 978-1-4503-5191-1. https://doi.org/10.1145/3167132.3167227

    CrossRef  Google Scholar 

  • Berners-Lee T et al (2001) The semantic web. Sci Am 284(5):28–37

    CrossRef  Google Scholar 

  • Ciccarese P et al (2013) PAV ontology: provenance, authoring and versioning. J Biomed Semant 4(1):37

    CrossRef  Google Scholar 

  • Claramunt C, Thériault M (1995) Managing time in GIS an event-oriented approach. In: van Rijsbergen CJ, Clifford J, Tuzhilin A (eds) Recent advances in temporal databases. Springer, London, pp 23–42. https://doi.org/10.1007/978-1-4471-3033-8_2. ISBN: 978-3-540-19945-8 978-1-4471-3033-8. (Visited on 01 Feb 2017)

  • Conradi R, Westfechtel B (1998) Version models for software configuration management. ACM Comput Surv (CSUR) 30(2):232–282. (Visited on 30 May 2016)

    Google Scholar 

  • Cox S, Little C (2017) Time ontology in OWL – W3C recommendation 19 Oct 2017. https://www.w3.org/TR/owl-time/. (Visited on 08 Jan 2019)

  • Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. https://www.w3.org/TR/rdf11-concepts/. (Visited on 01 Mar 2017)

  • Del Mondo G et al (2010) A graph model for spatio-temporal evolution. J UCS 16(11):1452–1477

    MathSciNet  MATH  Google Scholar 

  • Del Mondo G et al (2013) Modeling consistency of spatio-temporal graphs. Data Knowl Eng 84:59–80. ISSN: 0169023X. https://doi.org/10.1016/j.datak.2012.12.007. http://linkinghub.elsevier.com/retrieve/pii/S0169023X12001188

  • Ehrlinger L, Wöß W (2016) Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS), vol 48

    Google Scholar 

  • Eurostat (2001) Manual of concepts on land cover and land use information systems. OCLC: 464871883. Office for Official Publications of the European Communities, Luxembourg. ISBN: 978-92-894-0432-7

    Google Scholar 

  • Fearon JD (1999) What is identity (as we now use the word)? Unpublished manuscript, Stanford University, Stanford

    Google Scholar 

  • Flowerdew R (1991) Data integration: statistical methods for transferring data between zonal systems. In: In handling geographical information: methodology and potential applications, pp 39–54

    Google Scholar 

  • Gantner F (2011) A spatiotemporal ontology for the administrative units of Switzerland. Theses, University of Zurich – Switzerland

    Google Scholar 

  • Gotway Crawford CA and LJ Young (2005) Change of support: an inter-disciplinary challenge. In: Geostatistics for environmental applications. Springer, Berlin/Heidelberg, pp 1–13

    Google Scholar 

  • Grasland C, Madelin M (2006) Modifiable area unit problem. ESPON. https://halshs.archives-ouvertes.fr/halshs-00174241

  • Grenon P, Smith B (2004) SNAP and SPAN: towards dynamic spatial ontology. Spat Cogn Comput 4(1):69–104. ISSN: 1387-5868, 1542–7633. https://doi.org/10.1207/s15427633scc0401_5. (Visited on 14 Feb 2019)

  • Harbelot B, Arenas H, Cruz C (2013) Continuum: a spatiotemporal data model to represent and qualify filiation relationships. In: Proceedings of the 4th ACM SIGSPATIAL international workshop on geoStreaming. ACM, pp 76–85. (Visited on 15 Dec 2015)

    Google Scholar 

  • Harbelot B, Arenas H, Cruz C (2015) LC3: a spatio-temporal and semantic model for knowledge discovery from geospatial datasets. Web Semant Sci Serv Agents World Wide Web 35:3–24. http://www.sciencedirect.com/science/article/pii/S1570826815000840. (Visited on 19 Apr 2017)

  • Hausenblas M (2012) 5-star Open Data. (Visited on 08 Feb 2019)

    Google Scholar 

  • Howenstine E (1993) Measuring demographic change: the split tract problem. Prof Geogr 45(4):425. ISSN: 00330124

    CrossRef  Google Scholar 

  • Huibing W et al (2005) Modeling spatial-temporal data in version-difference model, p 4

    Google Scholar 

  • Kauppinen T, Hyvönen E (2007) Modeling and reasoning about changes in ontology time series. In: Ontologies. Springer, Boston, pp 319–338. (Visited on 03 Feb 2016)

    Google Scholar 

  • Kauppinen T, Väätäinen J, Hyvönen E (2008) Creating and using geospatial ontology time series in a semantic cultural heritage portal. Springer, Berlin/New York. (Visited on 11 Apr 2016)

    Google Scholar 

  • Khoshafian SN, Copeland GP (1986) Object identity. Association for computing machinery. New York, NY, USA, vol 21(11). ISSN: 0362–1340. https://doi.org/10.1145/960112.28739

  • Lacasta J et al (2014) Population of a spatio-temporal knowledge base for jurisdictional domains. Int J Geogr Inf Sci 28(9):1964–1987. ISSN: 1365-8816, 1362-3087. (Visited on 18 Jan 2017)

    Google Scholar 

  • López-Pellicer FJ et al (2008) Administrative units, an ontological perspective. In: Advances in conceptual modeling–challenges and opportunities. Springer, pp 354–363. https://doi.org/10.1007/978-3-540-87991-6_42 (Visited on 07 Apr 2016)

  • López-Pellicer FJ et al (2012) An ontology for the representation of spatiotemporal jurisdictional domains in information retrieval systems. Int J Geogr Inf Sci 26(4):579–597. ISSN: 1365-8816, 1362-3087. (Visited on 18 Jan 2017)

    Google Scholar 

  • Maedche A, Staab S (2001) Learning ontologies for the semantic web. In: Proceedings of the second international conference on semantic web-volume 40. CEUR-WS.org, pp 51–60. (Visited on 01 July 2016)

    Google Scholar 

  • Mathian H, Sanders L (2014) Spatio-temporal approaches: geographic objects and change process. Wiley, Hoboken

    CrossRef  Google Scholar 

  • Noy NF, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6(4):428–440. ISSN: 0219-1377, 0219-3116. https://doi.org/10.1007/s10115-003-0137-2. (Visited on 08 Feb 2016)

  • Ontotext (2018) What is a knowledge graph?| Onotext en-US. https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/. (Visited on 19 Feb 2019)

  • Openshaw S, Taylor PJ (1979) A million or so correlation coefficients: three experiments on the modifiable areal unit problem. Stat Appl Spat Sci 21:127–144

    Google Scholar 

  • Paulheim H (2017) Knowledge graph refinement: a survey of approaches and evaluation methods. Semant Web 8(3):489–508

    CrossRef  Google Scholar 

  • Perry M, Herring J (2012) OGC GeoSPARQL – a geographic query language for RDF data, p 75

    Google Scholar 

  • Plumejeaud C et al (2010) Transferring indicators into different partitions of geographic space. In: Taniar D et al (eds) Computational science and its applications ICCSA 2010. Lecture notes in computer science, vol 6016. Springer, Heidelberg, pp 445–460. ISBN: 978-3-642-12155-5

    CrossRef  Google Scholar 

  • Plumejeaud C et al (2011) Spatio-temporal analysis of territorial changes from a multi-scale perspective. Int J Geogr Inf Sci 25(10):1597–1612. (Visited on 07 Apr 2016)

    Google Scholar 

  • Renolen A (1996) History graphs: conceptual modeling of spatio-temporal data. Gis Front Bus Sci 2:46

    Google Scholar 

  • Renolen A (1997) Conceptual modelling and spatiotemporal information systems: how to model the real world. In: ScanGIS, vol 97, pp 1–22

    Google Scholar 

  • Sider T (2001) Four-dimensionalism: an ontology of persistence and time. Oxford University Press on Demand, Oxford

    CrossRef  Google Scholar 

  • Smith B, Varzi AC (2000) Fiat and bona fide boundaries. Philos Phenomenol Res 60(2):401–420

    CrossRef  Google Scholar 

  • Stefanidis K, Chrysakis I, Flouris G (2014) On designing archiving policies for evolving RDF datasets on the web. In: Yu E et al (eds) Conceptual modeling: 33rd international conference, ER 2014, Atlanta, 27–29 Oct 2014. Proceedings. Springer International Publishing, Cham, pp 43–56. https://doi.org/10.1007/978-3-319-12206-9_4. ISBN: 978-3-319-12206-9

    CrossRef  Google Scholar 

  • Tandy J, Van Den Brink L, Barnaghi P (2017) Spatial data on the web best practices – OGC and W3C recommendation. https://www.w3.org/TR/sdw-bp. (Visited on 28 Nov 2017)

  • Tichy W (1988) Software configuration management overview. Citeseer. (Visited on 21 June 2016)

    Google Scholar 

  • Tran B-H et al (2015) A semantic mediator for handling heterogeneity of spatio-temporal environment data. In: Research conference on metadata and semantics research. Springer, pp 381–392. (Visited on 02 May 2017)

    Google Scholar 

  • Wachowicz M (2003) Object-oriented design for temporal GIS. Research monographs in GIS. Taylor & Francis. ISBN: 9780203212394

    Google Scholar 

  • Wang F (2014) Quantitative methods and socio-economic applications in GIS. CRC Press. (Visited on 29/ June 2017)

    Google Scholar 

  • Welty C, Fikes R, Makarios S (2006) A reusable ontology for fluents in OWL. In: FOIS, vol 150, pp 226–236. (Visited on 05 May 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bernard, C., Plumejeaud-Perreau, C., Villanova-Oliver, M., Gensel, J., Dao, H. (2021). Semantic Graphs to Reflect the Evolution of Geographic Divisions. In: Werner, M., Chiang, YY. (eds) Handbook of Big Geospatial Data. Springer, Cham. https://doi.org/10.1007/978-3-030-55462-0_6

Download citation