Skip to main content

CFTR and Cystic Fibrosis: A Need for Personalized Medicine

  • Chapter
  • First Online:
Studies of Epithelial Transporters and Ion Channels

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 603 Accesses

Abstract

Cystic fibrosis (CF), a common lethal genetic disease, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene, which codes for an epithelial anion channel. Although the identification of the gene in 1989 heralded hope for a therapy to treat the underlying protein defect, patients continued to be treated exclusively with drugs that address the symptoms of the disease (antibiotics for airway disease, pancreatic supplements to replace digestive enzymes, and anti-inflammatories to reduce airway inflammation) rather than treating the basic defect. Nevertheless, this approach has resulted in a marked improvement in the survival of patients with CF over the last few decades, such that the median predicted survival is now around 40 years of age. Since the discovery of the gene encoding CFTR and the identification of mutations underlying the defects in CFTR function, the hunt has been on to discover drugs that would correct the basic defect in the CFTR protein. Although almost 1900 CFTR mutations have been described in patients, they mostly fall into a few broad categories of disruption. Given the disparate ways in which CFTR mutations affect the CFTR protein however, it has become apparent that a single drug regimen will not be effective in treating all patients. Thus, a patient’s genotype would have to be taken into account when deciding which drug would be appropriate to treat individual patients with CF. Individual or personalized medicine as a concept has been increasingly highlighted in recent years, yet with CF, personalized medicine is not a mere academic exercise but rather a necessity in order to effectively treat all the mutations that are found in CF patients. This chapter presents the current CFTR mutation classifications and shows how such classification is essential in the establishment of a mutation-specific targeted drug therapy for each individual with CF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P (2017) Development of exon skipping therapies for Duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27:251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, Moss RB, Pilewski JM, Rubenstein RC, Uluer AZ, Aitken ML, Freedman SD, Rose LM, Mayer-Hamblett N, Dong Q, Zha J, Stone AJ, Olson ER, Ordonez CL, Campbell PW, Ashlock MA, Ramsey BW (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363:1991–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams S, Owen G (2018) £11 million-a-year US pharmaceutical boss is accused of trying to ‘blackmail’ Theresa May into buying cystic fibrosis drug. https://www.dailymail.co.uk/news/article-5954789/11-million-year-pharmaceutical-boss-accused-trying-blackmail-Theresa-Mayhtml

    Google Scholar 

  • Aeffner F, Abdulrahman B, Hickman-Davis JM, Janssen PM, Amer A, Bedwell DM, Sorscher EJ, Davis IC (2013) Heterozygosity for the F508del mutation in the cystic fibrosis transmembrane conductance regulator anion channel attenuates influenza severity. J Infect Dis 208:780–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Malky G, Suri R, Sirimanna T, Dawson SJ (2014) Normal hearing in a child with the m.1555A>G mutation despite repeated exposure to aminoglycosides. Has the penetrance of this pharmacogenetic interaction been overestimated? Int J Pediatr Otorhinolaryngol 78:969–973

    PubMed  Google Scholar 

  • Alonzo De Los Ruyzes De Fonteca J (1606) Diez previlegios para mgeres prenadas. Alcala de Henares

    Google Scholar 

  • Alton EW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harrison PT, Henig N, Higgins T, Hyde SC, Innes JA, Korman MS (2016) Genetic medicines for CF: hype versus reality. Pediatr Pulmonol 51:S5–S17

    PubMed  Google Scholar 

  • Ameen N, Silvis M, Bradbury NA (2007) Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 6:1–14

    CAS  PubMed  Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118

    CAS  PubMed  Google Scholar 

  • Anderson D (1938) Cystic fibrosis of the pancreas: clinical and pathological study. Am J Dis Child 56:344

    Google Scholar 

  • Armstrong DK, Cunningham S, Davies JC, Alton EW (2014) Gene therapy in cystic fibrosis. Br Med J 99:465–468

    Google Scholar 

  • Aslam A, Jahnke N, Remmington T, Southern KW (2017) Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Paediatr Respir Rev 24:32–34

    PubMed  Google Scholar 

  • Aznarez I, Chan EM, Zielenski J, Blencowe BJ, Tsui LC (2003) Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet 12:2031–2040

    CAS  PubMed  Google Scholar 

  • Bagdany M, Veit G, Fukuda R, Avramescu RG, Okiyoneda T, Baaklini I, Singh J, Sovak G, Xu H, Apaja PM, Sattin S, Beitel LK, Roldan A, Colombo G, Balch W, Young JC, Lukacs GL (2017) Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat Commun 8:398

    PubMed  PubMed Central  Google Scholar 

  • Balch WE, Roth DM, Hutt DM (2011) Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb Perspect Biol 3:a004499

    Google Scholar 

  • Bebok Z, Collawn JF, Wakefield J, Parker W, Li Y, Varga K, Sorscher EJ, Clancy JP (2005) Failure of cAMP agonists to activate rescued deltaF508 CFTR in CFBE41o- airway epithelial monolayers. J Physiol 569:601–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3:1280–1284

    CAS  PubMed  Google Scholar 

  • Bidaud-Meynard A, Bossard F, Schnur A, Fukuda R, Veit G, Xu H, Lukacs GL (2018) Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting. J Cell Sci 132:bioRxiv

    Google Scholar 

  • Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, Norris SA, Durie PR, Drumm ML, Knowles MR, Cutting GR (2013) Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 62:3627–3635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42:10061–10072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boat TF, Welsh MJ, Beadudet AL, Scriver CR (1989) Cystic fibrosis. In: Scriver CR, Beadudet AL, Valle D, Sly WS (eds) The metabolic basis of inherited disease, 8th edn. McGraw-Hill, New York, pp 2649–2680

    Google Scholar 

  • Boinot C, Souchet MJ, Ferru-Clement R, Becq F (2014) Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing. J Pharmacol Exp Ther 350: 624–634

    Google Scholar 

  • Bompadre SG, Sohma Y, Li M, Hwang TC (2007) G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J Gen Physiol 129:285–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23:146–158

    CAS  PubMed  Google Scholar 

  • Bowerman M, Becker CG, Yanez-Munoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K (2017) Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 10:943–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle MP, Bell SC, Konstan MW (2012) The investigational CFTR corrector, VX-809 (Lumacaftor) co-administered with the oral potentiator ivacaftor improved CFTR and lung function in F508del homozygous patients: phase II study results. Pediatr Pulmonol 47:315

    Google Scholar 

  • Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM, Rietschel E, Huang X, Waltz D, Patel NR, Rodman D (2014) A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2:527–538

    CAS  PubMed  Google Scholar 

  • Bradbury NA (ed) (2015) Cystic fibrosis, vol 1. Encyclopedia of cell biology, 1st edn. Elsevier, London

    Google Scholar 

  • Bradbury NA, Cohn JA, Venglarik CJ, Bridges RJ (1994) Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles. J Biol Chem 269:8296–8302

    CAS  PubMed  Google Scholar 

  • Bridges RJ, Bradbury NA (2018) Cystic fibrosis, cystic fibrosis transmembrane conductance regulator and Drugs: insights from cellular trafficking. In: Ulloa-Aguirre A, Tao Y-X (eds) Targeting trafficking in drugd evelopment, vol 245. Springer, New York

    Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Fisher AL, Huang H, Xie Z (2016) CRISPR-mediated genome editing and human diseases. Genes Dis 3:244–251

    PubMed  PubMed Central  Google Scholar 

  • Castellani C, Assael BM (2016) Cystic fibrosis: a clinical view. Cell Mol Life Sci 74:129–140

    PubMed  Google Scholar 

  • CF Foundation (2018) NACFC2018—CFF announces $100 million ‘Infection Research Initiative’. https://cysticfibrosisnewstoday.com/2018/10/19/nacfc2018-cff-announces-100-million-infection-research-initiative/

  • CF Foundation (2017) https://www.cff.org/Trials/finder/details/478/Phase-2a-study-of-Galapagos-GLPG2222-in-adults-with-CF

    Google Scholar 

  • CF Foundation C (2015) Patient registry, annual report

    Google Scholar 

  • Chadwick S, Browning JE, Stern M (1998) Nasal application of glycerol in DF508 cystic fibrosis patients. Thorax 53:A60

    Google Scholar 

  • Char JE, Wolfe MH, Cho HJ, Park IH, Jeong JH, Frisbee E, Dunn C, Davies Z, Milla C, Moss RB, Thomas EA, Wine JJ (2014) A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor. PLoS One 9:e88564

    PubMed  PubMed Central  Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    CAS  PubMed  Google Scholar 

  • Chin S, Hung M, Won A, Wu YS, Ahmadi S, Yang D, Elmallah S, Toutah K, Hamilton CM, Young RN, Viirre RD, Yip CM, Bear CE (2018) Lipophilicity of the cystic fibrosis drug, ivacaftor (VX-770), and its destabilizing effect on the major CF-causing mutation: F508del. Mol Pharmacol 94:917–925

    CAS  PubMed  Google Scholar 

  • Cho DY, Zhang S, Lazrak A, Grayson JW, Pena Garcia JA, Skinner DF, Lim DJ, Mackey C, Banks C, Matalon S, Woodworth BA (2018) Resveratrol and ivacaftor are additive G551D CFTR-channel potentiators: therapeutic implications for cystic fibrosis sinus disease. Int Forum Allergy Rhinol 9:100–105. https://doi.org/10.1002/alr.22202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YH, Yu AM (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:793–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S (2001) Aberrant CFTR-dependent HCO- 3 transport in mutations associated with cystic fibrosis. Nature 410:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cholon DM, Quinney NL, Fulcher ML, Esther CR Jr, Das J, Dokholyan NV, Randell SH, Boucher RC, Gentzsch M (2014) Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci Transl Med 6:246ra296

    Google Scholar 

  • Chu CS, Trapnell BC, Curristin SM, Cutting G, Crystal RG (1992) Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J Clin Invest 90:785–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clague S (2014) Dorothy Hansine Andersen. Lancet Respir Med 2:184–185

    PubMed  Google Scholar 

  • Clain J, Fritsch J, Lehmann-Che J, Bali M, Arous M, Goossens M, Edelman A, Fanen P (2001) Two mild cystic fibrosis-associated mutations result in severe cystic fibrosis when combined in cis and reveal a residue important for cystic fibrosis transmembrane conductance regulator processing and function. J Biol Chem 276:9045–9049

    CAS  PubMed  Google Scholar 

  • Clain J, Lehmann-Che J, Dugueperoux I, Arous N, Girodon E, Legendre M, Goossens M, Edelman A, de Braekeleer M, Teulon J, Fanen P (2005) Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype. Hum Mutat 25:360–371

    CAS  PubMed  Google Scholar 

  • Clancy JP, Jain M (2012) Personalized medicine in cystic fibrosis: dawning of a new era. Am J Respir Crit Care Med 186:593–597

    CAS  PubMed  Google Scholar 

  • Clancy JP, Konstan MW, Rowe SM, Accurso FJ, Zeitlin PL, Hirawat S (2006) A phase II study of PTC124 in CF patients harboring premature stop mutations. North American Cystic Fibrosis Conference. Pediatr Pulmonol A269

    Google Scholar 

  • Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, Ballmann M, Boyle MP, Bronsveld I, Campbell PW, De Boeck K, Donaldson SH, Dorkin HL, Dunitz JM, Durie PR, Jain M, Leonard A, McCoy KS, Moss RB, Pilewski JM, Rosenbluth DB, Rubenstein RC, Schechter MS, Botfield M, Ordonez CL, Spencer-Green GT, Vernillet L, Wisseh S, Yen K, Konstan MW (2012) Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67:12–18

    CAS  PubMed  Google Scholar 

  • Clancy JP, Cotton CU, Donaldson SH, Solomon GM, VanDevanter DR, Boyle MP, Gentzsch M, Nick JA, Illek B, Wallenburg JC, Sorscher EJ, Amaral MD, Beekman JM, Naren AP, Bridges RJ, Thomas PJ, Cutting G, Rowe S, Durmowicz AG, Mense M, Boeck KD, Skach W, Penland C, Joseloff E, Bihler H, Mahoney J, Borowitz D, Tuggle KL (2018) CFTR modulator theratyping: current status, gaps and future directions. J Cyst Fibros 18:22–34. https://doi.org/10.1016/j.jcf.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn JA, Melhus O, Page LJ, Dittrich KL, Vigna SR (1991) CFTR: Development of high-affinity antibodies and localization in sweat gland. Biochem Biophys Res Commun 181:36–43

    Google Scholar 

  • Cojocel C, Dociu N, Ceacmacudis E, Baumann K (1984a) Effects of aminoglycoside treatment on renal protein reabsorption and accumulation. Contrib Nephrol 42:196–201

    CAS  PubMed  Google Scholar 

  • Cojocel C, Docius N, Maita K, Smith JH, Hook JB (1984b) Renal ultrastructural and biochemical injuries induced by aminoglycosides. Environ Health Perspect 57:293–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Aleksandrov L, Chang XB, Hou YX, He L, Hegedus T, Gentzsch M, Aleksandrov A, Balch WE, Riordan JR (2007) Domain interdependence in the biosynthetic assembly of CFTR. J Mol Biol 365:981–994

    CAS  PubMed  Google Scholar 

  • Curtis A, Nelson R, Porteous M, Burn J, Bhattacharya SS (1991) Association of less common cystic fibrosis mutations with a mild phenotype. J Med Genet 28:34–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cutting GR (2010) Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann NY Acad Sci 1214:57–69

    CAS  PubMed  Google Scholar 

  • Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16:45–56

    CAS  PubMed  Google Scholar 

  • Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE, Kazazian HH Jr (1990) A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–369

    CAS  PubMed  Google Scholar 

  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    CAS  PubMed  Google Scholar 

  • Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, McKone EF, Plant BJ, Prais D, Ramsey BW, Taylor-Cousar JL, Tullis E, Uluer A, McKee CM, Robertson S, Shilling RA, Simard C, Van Goor F, Waltz D, Xuan F, Young T, Rowe SM (2018) VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 379:1599–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis PB, Drumm ML, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 1545:1229–1256

    Google Scholar 

  • Davis PB, Schluchter MD, Konstan MW (2004) Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis. Pediatr Pulmonol 38: 204–209

    Google Scholar 

  • De Boeck C, Van Braeckel E, Van der Ent C (2016) GLPG1837 in subjects with cystic fibrosis (CF) and the S1251N mutation: results from a phase IIa study (SAPHIRA2). Pediatr Pulmonol S288

    Google Scholar 

  • de Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11

    PubMed  PubMed Central  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    CAS  PubMed  Google Scholar 

  • Derichs N (2013) Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur Respir Rev 22:58–65

    PubMed  Google Scholar 

  • DeStefano S, Gees M, Hwang TC (2018) Physiological and pharmacological characterization of the N1303K mutant CFTR. J Cyst Fibros 17:573–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devor DC, Bridges RJ, Pilewski JM (2000) Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 279:C461–C479

    CAS  PubMed  Google Scholar 

  • Dey I, Bradbury NA (2018) Models for intestinal fluid transport. In: Levitan I, Delpire E, Rasgado-Flores H (eds) Cell volume regulation: current topics in membrane biology. Elsevier, London

    Google Scholar 

  • Dhooghe B, Bouckaert C, Capron A, Wallemacq P, Leal T, Noel S (2015) Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice. Biol Open 4:929–936. https://doi.org/10.1242/bio.010967

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodge JA, Lewis PA, Stanton M, Wilsher J (2007) Cystic fibrosis mortality and survival in the UK: 1947-2003. Eur Respir J 29:522–526

    CAS  PubMed  Google Scholar 

  • Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, Bebok Z, Whitsett JA, Dey CR, Colledge WH, Evans MJ, Sorscher EJ, Bedwell DM (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med (Berl) 80:595–604

    CAS  Google Scholar 

  • Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 105:2064–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dugueperoux I, Bellis G, Lesure JF, Renouil M, Flodrops H, De Braekeleer M (2003) Cystic fibrosis at the Reunion Island (France): spectrum of mutations and genotype-phenotype for the Y112X mutation. J Cyst Fibros 3:185–188

    Google Scholar 

  • Eckford PD, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36639–36649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304:600–602

    CAS  PubMed  Google Scholar 

  • Elborn JS (2016) Cystic fibrosis. Lancet 388:2519–2531

    CAS  PubMed  Google Scholar 

  • Elkins MR, Bye PT (2006) Inhaled hypertonic saline as a therapy for cystic fibrosis. Curr Opin Pulm Med 12:445–452

    CAS  PubMed  Google Scholar 

  • Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2:240–248

    CAS  PubMed  Google Scholar 

  • Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14:148–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flume PA, Liou TG, Borowitz DS, Li H, Yen K, Ordonez CL, Geller DE (2012) Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest 142:718–724

    PubMed  PubMed Central  Google Scholar 

  • Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274:36193–36199

    CAS  PubMed  Google Scholar 

  • Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    CAS  PubMed  Google Scholar 

  • Galietta LJ, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, Kurth MJ, Nantz MH, Verkman AS (2001) Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 276:19723–19728

    CAS  PubMed  Google Scholar 

  • Genetic Analysis Consortium C (1990) Worldwide survey of the DF508 mutation – report from the cystic fibrosis genetic analysis consortium. Am J Hum Genet 47:354–359

    Google Scholar 

  • Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA (1999) Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today 4:431–439

    CAS  PubMed  Google Scholar 

  • Grasemann H (2017) CFTR Modulator therapy for cystic fibrosis. N Engl J Med 377:2085–2088

    PubMed  Google Scholar 

  • Griesenbach U, Alton EW (2012) Progress in gene and cell therapy for cystic fibrosis lung disease. Curr Pharm Des 18:642–662

    CAS  PubMed  Google Scholar 

  • Grootenhuis PD, Van Goor F, Hadida S, Burton B, Young T, Selkirk J, Chen W, Zhou J, Negulescu P (2016) Discovery and biological profile of next-generation CFTR correctors. Pediatr Pulmonol 51:Abs 188

    Google Scholar 

  • Grove DE, Rosser MF, Ren HY, Naren AP, Cyr DM (2009) Mechanisms for rescue of correctable folding defects in CFTR Delta F508. Mol Biol Cell 20:4059–4069

    Google Scholar 

  • Grubb BR, Gabriel SE, Mengos A, Gentzsch M, Randell SH, Van Heeckeren AM, Knowles MR, Drumm ML, Riordan JR, Boucher RC (2006) SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis. Am J Respir Cell Mol Biol 34:355–363

    CAS  PubMed  Google Scholar 

  • Guimbellot J, Solomon GM, Baines A, Heltshe SL, VanDalfsen J, Joseloff E, Sagel SD, Rowe SM (2018) Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations. J Cyst Fibros S1569–1993

    Google Scholar 

  • Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs GL (1999) C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 274:21873–21877

    CAS  PubMed  Google Scholar 

  • Hamdaoui N, Baudoin-Legros M, Kelly M, Aissat A, Moriceau S, Vieu DL, Colas J, Fritsch J, Edelman A, Planelles G (2011) Resveratrol rescues cAMP-dependent anionic transport in the cystic fibrosis pancreatic cell line. CFPAC1. Br J Pharmacol 163:876–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanrahan JW, Sampson HM, Thomas DY (2013) Novel pharmacological strategies to treat cystic fibrosis. Trends Pharmacol Sci 34:119–125

    CAS  PubMed  Google Scholar 

  • Harada K, Okiyoneda T, Hashimoto Y, Ueno K, Nakamura K, Yamahira K, Suhgahara T, Shuto T, Wada I, Suico MA, Kaoi H (2006) Calreticulin negatively regulates the cell surface expression of cystic fibrosis transmembrane conductance regulator. J Biol Chem 281:12841–12848

    CAS  PubMed  Google Scholar 

  • He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR (2010) Restoration of domain folding and interdomain assembly by second-site supressors of the delta F508 mutation in CFTR. EMBO J 24:3103–3112

    CAS  Google Scholar 

  • He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, Riordan JR (2013) Correctors of DeltaF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 27:536–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker TM, Aris RM (2004) Management of osteoporosis in adults with cystic fibrosis. Drugs 64:133–147

    CAS  PubMed  Google Scholar 

  • Heda GD, Tanwani M, Marino CR (2001) The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 280:C166–C174

    CAS  PubMed  Google Scholar 

  • Hiel H, Bennani H, Erre JP, Aurousseau C, Aran JM (1992) Kinetics of gentamicin in cochlear hair cells after chronic treatment. Acta Otolaryngol 112:272–277

    CAS  PubMed  Google Scholar 

  • Highsmith WE Jr, Burch LH, Zhou Z, Olsen JC, Strong TV, Smith T, Friedman KJ, Silverman LM, Boucher RC, Collins FS, Knowles MR (1997) Identification of a splice site mutation (2789 +5 G > A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat 9:332–338

    CAS  PubMed  Google Scholar 

  • Hongyu L, Pesce E, Sheppard DN, Singh AK, Pedemonte N (2018) Therapeutic approaches to CFTR dysfunction: from discovery to drug development. J Cyst Fibros 17:S14–S21

    Google Scholar 

  • Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    CAS  PubMed  Google Scholar 

  • Howard M, Fischer H, Roux J, Santos BC, Gullans SR, Yancey PH, Welch WJ (2003) Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J Biol Chem 278:35159–35167

    CAS  PubMed  Google Scholar 

  • Hwang TC, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol 273:C988–C998

    CAS  PubMed  Google Scholar 

  • Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11:227–249

    PubMed  Google Scholar 

  • ICER (2018) Modulator treatments for cystic fibrosis: effectiveness and value. https://icer-review.org/wp-content/uploads/2017/10/CF_Final_Evidence_Report_06072018pdf

  • Igreja S, Clarke LA, Botelho HM, Marques L, Amaral MD (2016) Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum Mutat 37:209–215

    CAS  PubMed  Google Scholar 

  • Illek B, Fischer H, Santos GF, Widdicombe JH, Machen TE, Reenstra WW (1995) cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol 268:C886–C893

    CAS  PubMed  Google Scholar 

  • Illek B, Zhang L, Lewis NC, Moss RB, Dong JY, Fischer H (1999) Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277:C833–C839

    CAS  PubMed  Google Scholar 

  • Jai Y, Shah K, Bridges RJ, Bradbury NA (2015) Evidence against resveratrol as a viable therapy for the rescue of defective DeltaF508 CFTR. Biochim Biophys Acta 1850:2377–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2013) Characterization of CFTR high expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 305:G453–G465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    CAS  PubMed  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteosome, contribute to CFTR processing. Cell 83:129–135

    CAS  PubMed  Google Scholar 

  • Jiang Q, Engelhardt JF (1998) Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis. Eur J Hum Genet 6:12–31

    CAS  PubMed  Google Scholar 

  • Jih KY, Hwang TC (2013) Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA 110:4404–4409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalid O, Mense M, Fischman S, Shitrit A, Bihler H, Ben-Zeev E, Schutz N, Pedemonte N, Thomas PJ, Bridges RJ, Wetmore DR, Marantz Y, Senderowitz H (2010) Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening. J Comput Aided Mol Des 24:971–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HS, Kerstan D, Dai L, Ritchie G, Quamme GA (2000) Aminoglycosides inhibit hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Can J Physiol Pharmacol 78:595–602

    CAS  PubMed  Google Scholar 

  • Kazani S, Alcantara J, Debonnett L, Doucet J, Jones IC, Kulmatycki K, Machineni S, Mostovy L, Nicholls I, Vegesna R, Verheijen J, Rowlands DJ (2016) Qbw251 is a safe and efficacious Cftr potentiator for patients with cystic fibrosis. Am J Respir Crit Care 193:A7789

    Google Scholar 

  • Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, Ramsey BW, Rowe SM, Sass LA, Tullis E, McKee CM, Moskowitz SM, Robertson S, Savage J, Simard C, Van Goor F, Waltz D, Xuan F, Young T, Taylor-Cousar JL (2018) VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 379(17):1599–1611. https://doi.org/10.1056/NEJMoa1807120

    Article  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    CAS  PubMed  Google Scholar 

  • Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, Nissim-Rafinia M, Blau H, Rivlin J, Aviram M, Elfring GL, Northcutt VJ, Miller LL, Kerem B, Wilschanski M (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II tria. Lancet 372:719–727

    CAS  PubMed  Google Scholar 

  • Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P, Bronsveld I, Fajac I, Malfroot A, Rosenbluth DB, Walker PA, McColley SA, Knoop C, Quattrucci S, Rietschel E, Zeitlin PL, Barth J, Elfring GL, Welch EM, Branstrom A, Spiegel RJ, Peltz SW, Ajayi T, Rowe SM (2014) Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2:539–547

    CAS  PubMed  Google Scholar 

  • Kim SJ, Skach WR (2012) Mechanisms of CFTR folding at the endoplasmic reticulum. Front Pharmacol 3:201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kissner D, LeFlore Y, Narayan SB, Marigowda G, Simard C, Le Camus C (2018) False-positive cannabinoid screens in adult cystic fibrosis patients treated with lumacaftor/ivacaftor. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2018.08.006

  • Konstan MW, Ratjen F (2012) Effect of dornase alfa on inflammation and lung function: potential role in the early treatment of cystic fibrosis. J Cyst Fibros 11:78–83

    CAS  PubMed  Google Scholar 

  • Konstan MW, Accurso FJ, Nasr SZ, Ahrens RC, Graff GR (2013) Efficacy and safety of a unique enteric-coated bicarbonate-buffered pancreatic enzyme replacement therapy in children and adults with cystic fibrosis. Clin Investig (Lond) 3:723–729. https://doi.org/10.4155/cli.13.62

    Article  CAS  Google Scholar 

  • Kramer EL, Clancy JP (2016) CFTR modulator therapies in pediatric cystic fibrosis: focus on ivacaftor. Expert Opin Orphan Drugs 4:1033–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreda SM, Mall MMA, Rochelle L, Yankaskas JR, Riordan JR, Boucher RC (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane conductance regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok I, Miranda L, Bhatt P, Bailey V, Dasgupta V, Chin A, An J, Bresilla W, Krouse ME, Cole B, Fitzpatrick R (2016) Effect of novel F508del-CFTR modulator combination FDL169 and FDL176 on expression and functional activity. Pediatr Pulmonol 53:Abs48

    Google Scholar 

  • Laborde-Casterot H, Donnay C, Chapron J, Burgel PR, Kanaan R, Honore I, Dusser D, Choudat D, Hubert D (2012) Employment and work disability in adults with cystic fibrosis. J Cyst Fibros 11:137–143

    PubMed  Google Scholar 

  • Levy L, Durie P, Pencharz P, Corey M (1986) Prognostic factors associated with patient survival during nutritional rehabilitatino in malnourished children and adolescents with cystic fibrosis. J Pediatr Gastroenterol 5:97–102

    CAS  Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas P, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    CAS  PubMed  Google Scholar 

  • Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol 396:406–430

    CAS  PubMed  Google Scholar 

  • Liang F, Shang H, Jordan NJ, Wong E, Mercadante D, Saltz J, Mahiou J, Bihler H, Mense M (2017) High-throughput screening for readthrough modulators of CFTR PTC mutations. SLAS Technol 22:315–324

    PubMed  Google Scholar 

  • Liu F, Zhang Z, Csanady L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion. Channel Cell 169:85–95

    CAS  PubMed  Google Scholar 

  • Liu F, Zhang Z, Levit A, Levring J, Touhara KK, Shoichet BK, Chen J (2019) Structural identification of a hotspot on CFTR for potentiation. Science 364:1184–1188

    Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2004) Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochem Biophys Res Commun 325:580–585

    CAS  PubMed  Google Scholar 

  • Lubamba B, Dhooghe B, Noel S, Leal T (2012) Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45:1132–1144

    CAS  PubMed  Google Scholar 

  • Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F (1997) Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J 328(Pt 2):353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macek M Jr, Mackova A, Hamosh A, Hilman BC, Selden RF, Lucotte G, Friedman KJ, Knowles MR, Rosenstein BJ, Cutting GR (1997) Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%. Am J Hum Genet 60:1122–1127

    Google Scholar 

  • Maquat LE (1995) When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maquat LE (2002) Molecular biology. Skiing toward nonstop mRNA decay. Science 295:2221–2222

    CAS  PubMed  Google Scholar 

  • Marangi M, Pistritto G (2018) Innovative therapeutic strategies for cystic fibrosis: moving forward to CRISPR technique. Front Pharmacol 9:396

    PubMed  PubMed Central  Google Scholar 

  • Marson FAL, Bertuzzo CS, Ribeiro JD (2015) Personalized drug therapy in cystic fibrosis: from fiction to reality. Curr Drug Targets 16:1007–2017

    CAS  Google Scholar 

  • Martin BL, Luo S, Kintanar A, Chen M, Graves DJ (1998) Effect of citrulline for arginine replacement on the structure and turnover of phosphopeptide substrates of protein phosphatase-1. Arch Biochem Biophys 359:179–191

    CAS  PubMed  Google Scholar 

  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998a) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    CAS  PubMed  Google Scholar 

  • Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC (1998b) Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest 102:1125–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • McColley SA, Rosenstein BJ, Cutting GR (1991) Differences in expression of cystic fibrosis in blacks and whites. Am J Dis Child 145:94–97

    Google Scholar 

  • Mendoza JL, Thomas PJ (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J Bioenerg Biomembr 39:499–505

    CAS  PubMed  Google Scholar 

  • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of DeltaF508 CFTR revealed by analyses of evolved sequences. Cell 148:164–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels W, Bridges RJ, Hastings M (2018) Splice switching antisense oligonucleotides for the treatment of cystic fibrosis. Pediatr Pulmonol 53:Abs 196

    Google Scholar 

  • Miller JP, Drew L, Green O, Villella A, McEwan B, Patel N, Qiu D, Bhalla A, Bastos C, Parks D, Giuliano K, Longo K, Ivarsson M, Munoz B, Lee P-S, Mehmet H, Haeberlein M (2016) CFTR amplifiers: a new class of CFTR modulator that complements the substrate limitations of other CF therapeutic modalities. Am J Respir Crit Care Med 193:absA557

    Google Scholar 

  • Mills AD, Yoo C, Butler JD, Yang B, Verkman AS, Kurth MJ (2010) Design and synthesis of a hybrid potentiator-corrector agonist of the cystic fibrosis mutant protein DeltaF508-CFTR. Bioorg Med Chem Lett 20:87–91

    CAS  PubMed  Google Scholar 

  • Molinski SV, Ahmadi S, Ip W, Ouyang H, Villella A, Miller JP, Lee PS, Kulleperuma K, Du K, Di Paola M, Eckford PD, Laselva O, Huan LJ, Wellhauser L, Li E, Ray PN, Pomes R, Moraes TJ, Gonska T, Ratjen F, Bear CE (2017) Orkambi(R) and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol Med 9:1224–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran O, Galietta LJ, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62:446–460

    CAS  PubMed  Google Scholar 

  • Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543

    CAS  PubMed  Google Scholar 

  • Nichols DP, Chmiel JF (2015) Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 50(Suppl 40):S39–S56

    PubMed  Google Scholar 

  • Nocera J (2015) The $300,000 drug. New York Times, July 18. https://www.nytimes.com/2014/07/19/opinion/joe-nocera-cystic-fibrosis-drug-price.html

  • Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, Young JC, Lukacs GL (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329:805–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol 9:444–454

    CAS  PubMed  Google Scholar 

  • Ozen AY, Duman DG (2016) Pancreatic involvement in cystic fibrosis. Minerva Med 107:427–436

    Google Scholar 

  • Phuan PW, Yang B, Knapp JM, Wood AB, Lukacs GL, Kurth MJ, Verkman AS (2011) Cyanoquinolines with independent corrector and potentiator activities restore DeltaPhe508-cystic fibrosis transmembrane conductance regulator chloride channel function in cystic fibrosis. Mol Pharmacol 80:683–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picciano JA, Ameen N, Grant BD, Bradbury NA (2003) Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol 285:C1009–C1018

    CAS  PubMed  Google Scholar 

  • Pilewski JM, Cooke J, Lekstrom-Himes J, Donaldson S (2015) VX-661 in combination with ivacaftor in patients with cystic fibrosis and the F508del-CFTR mutation. J Cystic Fibrosis 14:S1

    Google Scholar 

  • Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack A (2015) Orkambi, a new cystic fibrosis drug, wins F.D.A. approval. New York Times, July 2. http://www.nytimes.com/2015/07/03/business/orkambi-a-new-cystic-fibrosis-drug-wins-fda-approval.html. Accessed 20 July 2015

  • Pranke I, Bidou L, Martin N, Blanchet S, Hatton A, Karri S, Cornu D, Costes B, Chevalier B, Tondelier D, Girodon E, Coupet M, Edelman A, Fanen P, Namy O, Sermet-Gaudelus I, Hinzpeter A (2018) Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons. ERJ Open Res 4. https://doi.org/10.1183/23120541.00080-2017

  • Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, Marchase RB, Collawn JF (1999) Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem 274:3602–3609

    CAS  PubMed  Google Scholar 

  • Protasevich I, Yang Z, Wang C, Atwell S, Zhao X, Emtage S, Wetmore DR, Hunt JF, Brouillette CG (2010) Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain. Protein Sci 19:1917–1931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proteostasis (2018) Proteostasis announces positive data from ongoing phase 1 study of PTI-801 in cystic fibrosis patients on background Orkambi® therapy. http://ir.proteostasis.com/news-releases/news-release-details/proteostasis-announces-positive-data-ongoing-phase-1-study-pti

    Google Scholar 

  • Proteostatsis (2019) New data set release. http://ir.proteostasis.com/news-releases/news-release-details/proteostasis-therapeutics-announces-broad-new-dataset

  • PTI (2017) PTC Therapeutics announces results from pivotal phase 3 clinical trial of ataluren in patients living with nonsense mutation cystic fibrosis. http://ir.ptcbio.com/releasedetailcfm?releaseid=1015471

  • PTI (2018) Proteostasis therapeutics announces positive preliminary results from proprietary doublet in cystic fibrosis patients. http://ir.proteostasis.com/news-releases/news-release-details/proteostasis-therapeutics-announces-positive-preliminary-results

  • Pulmozyme (2005) Pulmozyme (dornase alfa) Inhalation Solution. Genentech, South San Francisco

    Google Scholar 

  • Pyle LC, Ehrhardt A, Mitchell LH, Fan L, Ren A, Naren AP, Li Y, Clancy JP, Bolger GB, Sorscher EJ, Rowe SM (2011) Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators. Am J Physiol Lung Cell Mol Physiol 301:L587–L597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301:421–422

    CAS  PubMed  Google Scholar 

  • Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79:S3–S22

    CAS  PubMed  Google Scholar 

  • Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratjen F (2001) Changes in strategies for optimal antibacterial therapy in cystic fibrosis. Int J Antimicrob Agents 17:93–96

    CAS  PubMed  Google Scholar 

  • Reddy MM, Quinton PM (2001) Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3 - conductances. JOP 2:212–218

    CAS  PubMed  Google Scholar 

  • Ren HY, Grove DE, De La Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM (2013) VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 24:3016–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Rogan MP, Stoltz DA, Hornick DB (2011) Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 139:1480–1490

    CAS  PubMed  Google Scholar 

  • Rosser MF, Grove DE, Chen L, Cyr DM (2008) Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2. Mol Biol Cell 1911:4570–4579

    Google Scholar 

  • Rowe SM, Clancy JP (2009) Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 23:165–174

    CAS  PubMed  Google Scholar 

  • Rowe SM, Verkman AS (2014) Cystic fibrosis transmembrane regulator correctors and potentiators. In: Riordan JR, Boucher RC, Quinton PM (eds) Cold Spring Harbor perspectives in medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Rowe SM, Miller S, Sorscher E (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    CAS  PubMed  Google Scholar 

  • Rowe SM, Accurso FJ, Clancy JP (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early phase clinical trials. Proc Am Thorac Soc 4:387–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, Sagel SD, Khan U, Mayer-Hamblett N, Van Dalfsen JM, Joseloff E, Ramsey BW (2014) Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 190:175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, Nair N, Simard C, Han L, Ingenito EP, McKee C, Lekstrom-Himes J, Davies JC (2017a) Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med 377:2024–2035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe SM, McColley SA, Rietschel E, Li X, Bell SC, Konstan MW, Marigowda G, Waltz D, Boyle MP (2017b) Lumacaftor/Ivacaftor treatment of patients with cystic fibrosis heterozygous for F508del-CFTR. Ann Am Thorac Soc 14:213–219

    PubMed  PubMed Central  Google Scholar 

  • Rowntree RK, Harris A (2003) The phenotypic consequences of CFTR mutations. Am Hum Genet 67:471–485

    CAS  Google Scholar 

  • Rubenstein RC, Zeitlin PL (1998) A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157:484–490

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 100:2457–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutter WC, Burgess DR, Burgess DS (2016) Increasing incidence of multidrug resistance among cystic fibrosis respiratpry bacterial isolates. Microb Drug Resist 23:51–55

    PubMed  Google Scholar 

  • Sala MA, Jain M (2018) Tezacaftor for the treatment of cystic fibrosis. Expert Rev Respir Med 12:725–732. https://doi.org/10.1080/17476348.2018.1507741

    Article  CAS  PubMed  Google Scholar 

  • SAPHIRA1 (2017) GLPG1837 in subjects with cystic fibrosis (CF) and the G551D mutation: results from a Phase II study (Saphira 1). http://www.glpg.com/docs/view/593e66d0a49a4-en

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635–638

    CAS  PubMed  Google Scholar 

  • Sawicki GS, McKone EF, Pasta DJ, Millar SJ, Wagener JS, Johnson CA, Konstan MW (2015) Sustained Benefit from ivacaftor demonstrated by combining clinical trial and cystic fibrosis patient registry data. Am J Respir Crit Care Med 192:836–842

    CAS  PubMed  Google Scholar 

  • Schneider EK (2018) Cytochrome P450 3A4 Induction: Lumacaftor versus ivacaftor potentially resulting in significantly reduced plasma concentration of ivacaftor. Drug Metab Lett 12:71–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    CAS  PubMed  Google Scholar 

  • Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, Davy N, Bismuth E, Reinert P, Lenoir G, Lesure JF, Rousset JP, Edelman A (2007) In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 5:5

    PubMed  PubMed Central  Google Scholar 

  • Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, Roussel D, Fritsch J, Hanssens L, Hirawat S, Miller NL, Constantine S, Reha A, Ajayi T, Elfring GL, Miller LL (2010) Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 182:1262–1272

    CAS  PubMed  Google Scholar 

  • Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105:3256–3261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA 87:9188–9192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, Bache KG, Papsin B, Zerangue N, Stenmark H, Lukacs GL (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164:923–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature 362:160–164

    CAS  PubMed  Google Scholar 

  • Shoshani T, Augarten A, Gazit E, Bashan N, Yahav Y, Rivlin Y, Tal A, Seret H, Yaar L, Kerem E, Bat-Sheva K (1992) Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet 50:222–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvis MR, Picciano JA, Bertrand C, Weixel K, Bridges RJ, Bradbury NA (2003) A mutation in the cystic fibrosis transmembrane conductance regulator generates a novel internalization sequence and enhances endocytic rates. J Biol Chem 278:11554–11560

    CAS  PubMed  Google Scholar 

  • Sinha C, Zhang W, Moon CS, Actis M, Yarlagadda S, Arora K, Woodroofe K, Clancy JP, Lin S, Ziady AG, Frizzell R, Fuji N, Naren AP (2015) Capturing the direct binding of CFTR correctors to CFTR by using Click chemistry. Chembiochem 16:2017–2022

    Google Scholar 

  • Song Y, Sonawane ND, Salinas D, Qian L, Pedemonte N, Galietta LJ, Verkman AS (2004) Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models. J Biol Chem 279:40629–40633

    CAS  PubMed  Google Scholar 

  • Southern KW, Patel S, Sinha IP, Nevitt SJ (2018) Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst Rev 8:CD010966

    PubMed  Google Scholar 

  • Spitali P, Aartsma-Rus A (2012) Splice modulating therapies for human disease. Cell 148:1085–1088

    CAS  PubMed  Google Scholar 

  • Strug LJ, Stephenson AL, Panjwani N, Harris A (2018) Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 27:R173–R186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swiatecka-Urban A, Duhaime M, Coutermarsh B, Karlson KH, Collawn J, Milewski M, Cutting GR, Guggino WB, Langford G, Stanton BA (2002) PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 277:40099–40105

    CAS  PubMed  Google Scholar 

  • Tan CT, Lee SY, Yao CJ, Liu SH, Lin-Shiau SY (2001) Effects of gentamicin and pH on [Ca2+]i in apical and basal outer hair cells from guinea pigs. Hear Res 154:81–87

    CAS  PubMed  Google Scholar 

  • Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C, Wang LT, Ingenito EP, McKee C, Lu Y, Lekstrom-Himes J, Elborn JS (2017) Tezacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 377:2013–2023

    CAS  PubMed  Google Scholar 

  • Thibodeau PH, Richardson JM 3rd, Wang W, Millen L, Watson J, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ (2010) The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 285:35825–35835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PJ, Shenbagamurthi P, Ysern X, Pedersen PL (1991) Cystic fibrosis transmembrane conductance regulator: nucleotide binding to a synthetic peptide. Science 251:555–557

    CAS  PubMed  Google Scholar 

  • Thomson AH (1995) Human recombinant DNase in cystic fibrosis. J R Soc Med 88(Suppl 25):24–29

    PubMed  PubMed Central  Google Scholar 

  • Trujilliano D, Ramos MD, Gonzalez J, Tornador C, Sotillo F, Escaramis G, Ossowski SLA, Casais T, Estavill X (2013) Next generation diagnostics of cystic fibrosis and CFTR-related disorders by targeted multiplex high-coverage resequencing of CFTR. J Med Genet 50:455–462

    Google Scholar 

  • Uttamsingh V, Pilja L, Grotbeck B, Brummel CL, Uddin N, Harbeson SL, Braman V, Cassella J (2016) CTP-656 tablet confirmed superiority of pharmacokinetic profile relative to Kalydeco in Phase 1 clinical trials. J Cystic Fibrosis 10:S22

    Google Scholar 

  • Van de Steen O, Namour F, Kanters D, Gheyle L, Geller DE, de Kock H, Vanhoutte FP (2016) Safety, tolerability and pharmacokinetics of a novel CFTR corrector molecule GLPG2222 in healthy volunteers. Pediatr Pulmonol 252

    Google Scholar 

  • Van der Plas SE, Kelgtermans H, De Munck T, Martina SLX, Dropsit S, Quinton E, De Blieck A, Joannesse C, Tomaskovic L, Jans M, Christophe T, van der Aar E, Borgonovi M, Nelles L, Gees M, Stouten P, Van Der Schueren J, Mammoliti O, Conrath K, Andrews M (2018) Discovery of N-(3-Carbamoyl-5,5,7,7-tetramethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-2-yl)-lH-pyr azole-5-carboxamide (GLPG1837), a novel potentiator which can open Class III Mutant Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channels to a high extent. J Med Chem 61:1425–1435

    PubMed  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009a) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106:18825–18830

    PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Cao D, Neuberger T, Singh AK, Olson ER, Wine JJ, Frizzell R, Ashlock M, Negulescu P (2009b) VX-809, a CFTR corrector, increases the cell surface density of functional F508del-CFTR in pre-clinical models of cystic fibrosis. Pediatr Pulmonol 44:154–155

    Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848

    PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Yu H, Burton B, Huang C, Hoffman B (2012) Ivacaftor potentiates multiplemutant cystic fibrosis transconductance regulator (CFTR) forms. Pediatr Pulmonol 47:233

    Google Scholar 

  • Varga K, Jurkuvenaite A, Wakefield J, Hong JS, Guimbellot JS, Venglarik CJ, Niraj A, Mazur M, Sorscher EJ, Collawn JF, Bebok Z (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279:22578–22584

    CAS  PubMed  Google Scholar 

  • Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL (2014) Some gating potentiators, including VX-770, diminish DeltaF508-CFTR functional expression. Sci Transl Med 6:246ra297

    Google Scholar 

  • Veit G, Avramescu RG, Chiang AN, Houchk SA, Cai Z, Peters KW, Hong JS, Pollard H, Guggino WB, Balch WE, Skach WR, Cutting G, Frizzell R, Sheppard D, Cyr D, Sorscher E, Brodsky JL, Lukacs GL (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkman AS, Lukacs GL, Galietta LJ (2006) CFTR chloride channel drug discovery—inhibitors as antidiarrheals and activators for therapy of cystic fibrosis. Curr Pharm Des 12:2235–2247

    CAS  PubMed  Google Scholar 

  • Verkman AS, Edelman A, Amaral M, Mall MA, Beekman JM, Meiners T, Galietta LJ, Bear CE (2015) Finding new drugs to enhance anion secretion in cystic fibrosis: Toward suitable systems for better drug screening. Report on the pre-conference meeting to the 12th ECFS Basic Science Conference, Albufeira, 25-28 March 2015. J Cyst Fibros 14:700–705

    PubMed  PubMed Central  Google Scholar 

  • Vertex (2013) Treatment with VX-661 and ivacaftor in a phase 2 study resulted in statistically significant improvements in lung function in people with cystic fibrosis who have two copies of the F508del mutation. https://investors.vrtx.com/news-releases/news-release-details/treatment-vx-661-and-ivacaftor-phase-2-study-resulted?ReleaseID=757597

  • Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP (2015) Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373:220–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Li G, Clancy JP, Kirk KL (2005) Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J Biol Chem 280:23622–23630

    CAS  PubMed  Google Scholar 

  • Wang C, Protasevich I, Yang Z, Seehausen D, Skalak T, Zhao X, Atwell S, Spencer Emtage J, Wetmore DR, Brouillette CG, Hunt JF (2010) Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis. Protein Sci 19:1932–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boel G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF (2018a) Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 293(46):17685–17704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu B, Searle X, Yeung C, Bogdan A, Greszler S, Singh A, Fan Y, Swensen AM, Vortherms T, Balut C, Jia Y, Desino K, Gao W, Yong H, Tse C, Kym P (2018b) Discovery of 4-[(2R,4R)-4-({[1-(2,2-Difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a potent cystic fibrosis transmembrane conductance regulator (CFTR) corrector for the treatment of cystic fibrosis. J Med Chem 61:1436–1449

    CAS  PubMed  Google Scholar 

  • Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 26941:25710–25718

    Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    CAS  PubMed  Google Scholar 

  • Webster MJ, Tarran R (2018) Slippery when wet: airway surface liquid homeostasis and mucus hydration. In: Levitan I, Delpire E, Rasgado-Flores H (eds) Cell volume regulation, vol 81. Academic, London, pp 293–336

    Google Scholar 

  • Weinreich F, Wood PG, Riordan JR, Nagel G (1997) Direct action of genistein on CFTR. Pflugers Arch 434:484–491

    CAS  PubMed  Google Scholar 

  • Weixel KM, Bradbury NA (2000) The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. J Biol Chem 275:3655–3660

    CAS  PubMed  Google Scholar 

  • Weixel KM, Bradbury NA (2001) Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway. J Biol Chem 276:46251–46259

    CAS  PubMed  Google Scholar 

  • Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, Wilde RG, Karp G, Takasugi J, Chen G, Jones S, Ren H, Moon YC, Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG, Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA, Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL, Spatrick P, He F, Kawana M, Feng H, Jacobson A, Peltz SW, Sweeney HL (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91

    CAS  PubMed  Google Scholar 

  • Welsh M, Ramsey B (2001) Cystic Fibrosis. In: Scriver C, Beaudet A, Valle D (eds) The metabolic and molecular basis of inherited disease, vol 3. McGraw-Hill, New York, pp 5121–5188

    Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    CAS  PubMed  Google Scholar 

  • White NM, Jiang D, Burgess JD, Bederman IR, Previs SF, Kelley TJ (2007) Altered cholesterol homeostasis in cultured and in vivo models of cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 292:L476–L486

    CAS  PubMed  Google Scholar 

  • White MK, Kaminski R, Young WB, Roehm PC, Khalili K (2017) CRISPR editing technology in biological and biomedical investigation. J Cell Biochem 118:3586–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L, Kerem B, Kerem E (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441

    CAS  PubMed  Google Scholar 

  • Wilschanski M, Dupuis A, Ellis L, Jarvi K, Zielenski J, Tullis E, Martin S, Corey M, Tsui LC, Durie P (2006) Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med 174:787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue X, Mutyam V, Thakerar A, Mobley J, Bridges RJ, Rowe SM, Keeling KM, Bedwell DM (2017) Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Hum Mol Genet 26:3116–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe SJ, Aranda JV (2010) Neonatal and pediatric pharmacology: therapeutic principles in practice. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Yamashiro Y, Shimizu T, Oguchi S, Shioya T, Nagata S, Ohtsuka Y (1997) The estimated incidence of cystic fibrosis in Japan. J Pediatr Gastroenterol Nutr 24:544–547

    CAS  PubMed  Google Scholar 

  • Yeh HI, Sohma Y, Conrath K, Hwang TC (2017) A common mechanism for CFTR potentiators. J Gen Physiol 149:1105–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo JS, Moyer BD, Bannykh S, Yoo HM, Riordan JR, Balch WE (2002) Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway. J Biol Chem 277:11401–11409

    CAS  PubMed  Google Scholar 

  • Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, Urrutia A, Joubran J, Seepersaud S, Sussky K, Hoffman BJ, Van Goor F (2012) Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 11:237–245

    CAS  PubMed  Google Scholar 

  • Zawistoski M, Sui J, Ordonez C, Mai V, Liu ET, Li T, Kwok I, Kolodziej J, Kanawade A, Fitzpatrick R, Deshpande A, Dasgupta A, Cole B, Chin JL, Bresilla C, Bailey V, An W, Krouse ME (2016) Properties of a novel F508del-CFTR corrector FDL169. J Cyst Fibros 15:559–560

    Google Scholar 

  • Zhang Z, Liu F, Chen J (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. 115: 12757–12762

    Google Scholar 

  • Zheng Y, Schachern PA, Sone M, Papapella MM (2001) Aminoglycoside ototoxicity. Otol Neurotol 22:266–268

    CAS  PubMed  Google Scholar 

  • Zielenski J, Patrizio P, Corey M, Handelin B, Markiewicz D, Asch R, Tsui LC (1995) CFTR gene variant for patients with congenital absence of vas deferens. Am J Hum Genet 57:958–960

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Ashvani Singh, Principal Scientist AbbVie Inc, for helpful discussions and insights into medicinal chemistry. The author also acknowledges the help and support of the CF Research Group at the Chicago Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Bradbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradbury, N.A. (2020). CFTR and Cystic Fibrosis: A Need for Personalized Medicine. In: Hamilton, K.L., Devor, D.C. (eds) Studies of Epithelial Transporters and Ion Channels. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55454-5_15

Download citation

Publish with us

Policies and ethics