Skip to main content

AutoIDL: Automated Imbalanced Data Learning via Collaborative Filtering

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12275))

  • 1313 Accesses

Abstract

AutoML aims to select an appropriate classification algorithm and corresponding hyperparameters for an individual dataset. However, existing AutoML methods usually ignore the intrinsic imbalance nature of most real-world datasets and lead to poor performance. For handling imbalanced data, sampling methods have been widely used since their independence of the used algorithms. We propose a method named AutoIDL for selecting the sampling methods as well as classification algorithms simultaneously. Particularly, AutoIDL firstly represents datasets as graphs and extracts their meta-features with a graph embedding method. In addition, meta-targets are identified as pairs of sampling methods and classification algorithms for each imbalanced dataset. Secondly, the user-based collaborative filtering method is employed to train a ranking model based on the meta repository to select appropriate sampling methods and algorithms for a new dataset. Extensive experimental results demonstrate that AutoIDL is effective for automated imbalanced data learning and it outperforms the state-of-the-art AutoML methods.

Supported by National Natural Science Foundation of China under Grant No. 61702405 and the China Postdoctoral Science Foundation under Grant No. 2017M623176.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barua, S., Islam, M.M., Yao, X., Murase, K.: Mwmote-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2), 405–425 (2012)

    Article  Google Scholar 

  2. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: PAKDD, pp. 475–482 (2009)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smotesynthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  4. Douzas, G., Bacao, F., Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and smote. Inf. Sci. 465, 1–20 (2018)

    Article  Google Scholar 

  5. Elshawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open challenges. CoRR (2019). http://arxiv.org/abs/1906.02287

  6. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: NeurIPS, pp. 2962–2970 (2015)

    Google Scholar 

  7. Guo, H., Li, Y., Jennifer, S., Gu, M., Huang, Y., Gong, B.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  8. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: ICIC, pp. 878–887 (2005)

    Google Scholar 

  9. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

    Article  Google Scholar 

  10. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IJCNN, pp. 1322–1328 (2008)

    Google Scholar 

  11. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR, pp. 227–234 (1999)

    Google Scholar 

  12. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, pp. 179–186 (1997)

    Google Scholar 

  13. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 63–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_9

    Chapter  Google Scholar 

  14. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

    Article  Google Scholar 

  15. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  16. Mani, I., Zhang, I.: KNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of Workshop on Learning from Imbalanced Datasets, pp. 1–7 (2003)

    Google Scholar 

  17. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. CoRR (2017). http://arxiv.org/abs/1707.05005

  18. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_8

    Chapter  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: KDD, pp. 847–855 (2013)

    Google Scholar 

  21. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

    Article  MathSciNet  Google Scholar 

  23. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: collaborative filtering for AutoML model selection. In: KDD, pp. 1173–1183 (2019)

    Google Scholar 

  24. Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36(3), 5718–5727 (2009)

    Article  Google Scholar 

  25. Zhu, X.J.: Semi-supervised learning literature survey. Technical report. University of Wisconsin-Madison Department of Computer Sciences (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Sun, Z., Qi, Y. (2020). AutoIDL: Automated Imbalanced Data Learning via Collaborative Filtering. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12275. Springer, Cham. https://doi.org/10.1007/978-3-030-55393-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55393-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55392-0

  • Online ISBN: 978-3-030-55393-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics