Skip to main content

System Architecture of a Robotics Airship

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 198)

Abstract

This paper aims to present the conception, design, and realization of a robotics airship. Differently, from the classic bi-propulsion, this vehicle has four vectored thrusters. Tail surfaces complete the directional actuation. The project has the code-name DRONI, the acronym for “Dirigı́vel Robótico de Concepção Inovadora” (Robotic Airship with an Innovative Design in free translation). The initial motivation to start the project was the demand for an aerial platform for environmental monitoring of flooded areas in the Amazon region. This operation scenario imposes severe restrictions on the practical usage of quadrotors and fixed wings. High maneuverability, medium to long-endurance, flexible flight modes (hover, vertical takeoff and landing) are the most essential requirements for an effective aerial platform to overfly the vast Amazon canopy. Medium to long-endurance surveillance, cargo, and telecommunication relay are other common application of airships. The paper presents the current vehicle’s architecture. The main subsystems shown are the robotic embedded infrastructure, the ground station and the communication system. The 6 kg payload enables the use of several types of cameras and sensors. Moreover, the paper presents the dynamic modeling with a control based on Incremental Nonlinear Dynamics Inverse. The inaugural flight is also shown, and the results are promising, towards a multipurpose aerial platform, that can be applied beyond environmental monitoring.

Keywords

  • Unmanned aerial vehicle
  • System architecture
  • Environmental monitoring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55374-6_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55374-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Elfes, A., Bueno, S.S., Bergerman, M., Ramos, J.G.: A semi-autonomous robotic airship for environmental monitoring missions. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998 (1998)

    Google Scholar 

  2. Wimmer, D.-A., Bildstein, M., Well, K.: Research airship ‘lotte’ make: development and operation controllers for autonomous flight phases. In: IEEE International Conference on Intelligent Robots and Systems, pp. 55–68, Lausanne, Switzerland, October 2002 (2002)

    Google Scholar 

  3. Hygounenc, E., Soueres, P., Lacroix, S., Jung, I.-K.: The autonomous blimp project at LAAS/CNRS: achievements in flight control and terrain mapping. Int. J. Robot. Res. 23(4), 473–511 (2004)

    CrossRef  Google Scholar 

  4. Lee, S.-J., Kim, S.-P., Kim, T.-S., Kim, H.-K., Lee, H.-C.: Development of autonomous flight control system for 50 m unmanned airship. In: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, December 2004 (2004)

    Google Scholar 

  5. Elfes, A., Montgomery, J.F., Hall, J.L., Joshi, S.S., Payne, J., Bergh, C.F.: Autonomous flight control for a titan exploration Aerobot. In: 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS 2005, Munich, Germany (2005)

    Google Scholar 

  6. Moutinho, A., Mirisola, L., Azinheira, J., Dias, J.: Project diva: guidance and vision surveillance techniques for an autonomous airship. In: Robotics Research Trends, pp. 77–120. Nova Science Publishers (2008)

    Google Scholar 

  7. Zheng, Z., Huo, W., Wu, Z.: Autonomous airship path following control: theory and experiments. Control Eng. Pract. 21(6), 769–788 (2013)

    CrossRef  Google Scholar 

  8. Earon, E., Rabbath, C., Apkarian, J.: Design and control of a novel hybrid vehicle concept. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, South Carolina, USA, August 2007 (2007)

    Google Scholar 

  9. Carvalho, J., Bueno, S., Modesto, J.: Sistemas aéreos não-tripulados para o monitoramento e gestão de risco do bioma amazônico. Revista Computacão Brasil, March 2014 (2014)

    Google Scholar 

  10. OSRF: ROS - Robot Operating System (2009). www.ros.org. Accessed 29 Jan 2018

  11. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: The Pixhawk open-source computer vision framework for MAVs (2011). www.pixhawk.org. Accessed 29 Jan 2018

  12. Meier, L., Tanskanen, P., Heng, L.: Qgroundcontrol: ground control station for small air-land-water autonomous unmanned systems (2010). www.qgroundcontrol.org. Accessed 29 Jan 2018

  13. Azinheira, J.R., de Paiva, E.C., Bueno, S.S.: Influence of wind speed on airship dynamics. J. Guid. Control Dyn. 25(6), 1116–1124 (2002)

    CrossRef  Google Scholar 

  14. Arias, R.: Modelagem de um dirigíıvel robótico com propulsão elétrica de quatro motores. Master’s thesis, Universidade Estadual de Campinas, SP, Brasil (2014)

    Google Scholar 

  15. Azinheira, J., Moutinho, A., Carvalho, J.: Lateral control of airship with uncertain dynamics using incremental nonlinear dynamics inversion. In: 11th IFAC Symposium on Robot Control SYROCO, Salvador - BA, Brazil, August 2015 (2015)

    Google Scholar 

  16. Carvalho, J., Moutinho, A., Azinheira, J.R.: Integrating mission planner to the flight control system of a robotic airship, XXI Congresso Brasileiro de Automática - CBA (2016)

    Google Scholar 

  17. Vieira, H., Azinheira, J.R., Moutinho, A., de Paiva, E.C.: Controladores não lineares para um dirigível robótico de propulsão quádrupla. XXI Congresso Brasileiro de Automática – CBA (2016)

    Google Scholar 

Download references

Acknowledgments

This work is sponsored by DRONI (CNPQ 402112/13-0), INCT (CNPQ 465755/14-3, FAPESP 2014/50851-0), Brasil; FCT (LAETA UID/EMS/50022/2013), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Reginaldo H. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, J.R.H. et al. (2021). System Architecture of a Robotics Airship. In: Pereira, L., Carvalho, J., Krus, P., Klofsten, M., De Negri, V. (eds) Proceedings of IDEAS 2019. IDEAS 2018. Smart Innovation, Systems and Technologies, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-55374-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55374-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55373-9

  • Online ISBN: 978-3-030-55374-6

  • eBook Packages: EngineeringEngineering (R0)