Skip to main content

Backflash Light as a Security Vulnerability in Quantum Key Distribution Systems

  • Chapter
  • First Online:
Physical Layer Security

Abstract

Based on the fundamental rules of quantum mechanics, two communicating parties can generate and share a secret random key that can be used to encrypt and decrypt messages sent over an insecure channel. This process is known as quantum key distribution (QKD). Contrary to classical encryption schemes, the security of a QKD system does not depend on the computational complexity of specific mathematical problems. However, QKD systems can be subject to different kinds of attacks, exploiting engineering, and technical imperfections of the components forming the systems. Here, we review the security vulnerabilities of QKD. We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks. We equally highlight the method for quantifying backflash emission and the different ways to mitigate this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  Google Scholar 

  3. C. Cheng, R. Lu, A. Petzoldt, T. Takagi, Securing the internet of things in a quantum world. IEEE Commun. Mag. 55(2), 116–120 (2017)

    Article  Google Scholar 

  4. L.Chen, S.Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, D. Smith-Tone, Report on post-quantum cryptography. Technical Report (April 2016) (2016)

    Google Scholar 

  5. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  6. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J.P. Torres, M.W. Mitchell, V. Pruneri, True random numbers from amplified quantum vacuum. Opt. Express 19(21), 20665 (2011)

    Google Scholar 

  7. Quantum Random Number Generators and Their Applications in Cryptography, vol. 8375 (2012)

    Google Scholar 

  8. A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R.W. Boyd, E. Karimi, High-dimensional intracity quantum cryptography with structured photons. Optica 4(9), 1006 (2017)

    Google Scholar 

  9. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, P. Villoresi, Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113(6), (2014)

    Google Scholar 

  10. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  Google Scholar 

  11. H. Singh, D. Gupta, A. Singh, Quantum key distribution protocols: a review. IOSR J. Comput. Eng. 16(2), 01–09 (2014)

    Article  Google Scholar 

  12. A. Huang, S.-H. Sun, Z. Liu, V. Makarov, Quantum key distribution with distinguishable decoy states. Phys. Rev. A 98(1), 012330 (2018)

    Google Scholar 

  13. I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10(10), 631–641 (2016)

    Article  Google Scholar 

  14. See for example: ID Quantique (MagiQ Technologies/QuintessenceLabs Pty Ltd, Somerville/California, 2019). https://www.idquantique.com/. https://www.magiqtech.com/. https://www.quintessencelabs.com/

  15. G. Brassard, N. Lütkenhaus, T. Mor, B.C. Sanders, Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330–1333 (2000)

    Article  Google Scholar 

  16. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, H. Weinfurter, Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13(7), 073024 (2011)

    Google Scholar 

  17. N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, G. Leuchs, Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16(12), 123030 (2014)

    Google Scholar 

  18. A.N. Bugge, S. Sauge, A.M.M. Ghazali, J. Skaar, L. Lydersen, V. Makarov, Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112(7), 2014

    Google Scholar 

  19. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)

    Article  Google Scholar 

  20. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, G. Leuchs, After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)

    Google Scholar 

  21. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Thermal blinding of gated detectors in quantum cryptography. Opt. Express 18(26), 27938 (2010)

    Google Scholar 

  22. European Telecommunications Standards Institute (2019). https://www.etsi.org/technologies/quantum-key-distribution

  23. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, SPAD figures of merit for photon-counting, photon-timing, and imaging applications: A review. IEEE Sens. J. 16(1), 3–12 (2016)

    Article  Google Scholar 

  24. A. Vakhitov, V. Makarov, D.R. Hjelme, Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Opt. 48(13), 2023–2038 (2001)

    Article  Google Scholar 

  25. S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, V. Makarov, Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Phys. Rev. A 91(6), 062301 (2015)

    Google Scholar 

  26. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  27. H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, Z.-F. Han, Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Google Scholar 

  28. C. Kurtsiefer, P. Zarda, S. Mayer, H. Weinfurter, The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?. J. Mod. Opt. 48(13), 2039–2047 (2001)

    Article  Google Scholar 

  29. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photonics 3(12), 696–705 (2009)

    Article  Google Scholar 

  30. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35(12), 1956 (1996)

    Google Scholar 

  31. R. Newman, Visible light from a silicon p-n Junction. Phys. Rev. 100(2), 700–703 (1955)

    Article  Google Scholar 

  32. D. Gautam, W. Khokle, and K. Garg, Photon emission from reverse-biased silicon p-n junctions. Solid-State Electron. 31(2), 219–222 (1988)

    Article  Google Scholar 

  33. A.G. Chynoweth, K.G. McKay, Photon emission from avalanche breakdown in silicon. Phys. Rev. 102(2), 369–376 (1956)

    Article  Google Scholar 

  34. A. Lacaita, F. Zappa, S. Bigliardi, M. Manfredi, On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices. IEEE Trans. Electron. Devices 40(3), 577–582 (1993)

    Article  Google Scholar 

  35. P.V.P. Pinheiro, P. Chaiwongkhot, S. Sajeed, R.T. Horn, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, V. Makarov, Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Opt. Express 26(16), 21020 (2018)

    Google Scholar 

  36. F. Acerbi, A. Tosi, F. Zappa, Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs. IEEE Photonics Technol. Lett. 25(18), 1778–1780 (2013)

    Article  Google Scholar 

  37. Y. Shi, J.Z.J. Lim, H.S. Poh, P.K. Tan, P.A. Tan, A. Ling, C. Kurtsiefer, Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes. Opt. Express 25(24), 30388 (2017)

    Google Scholar 

  38. A. Meda, I.P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, M. Genovese, Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution. Light Sci. Appl. 6(6), e16261–e16261 (2016)

    Article  Google Scholar 

  39. J. Kupferman, S. Arnon, Zero-error attacks on a quantum key distribution FSO system. OSA Continuum 1(3), 1079 (2018)

    Google Scholar 

  40. H. Zhao, M.-S. Alouini, On the performance of quantum key distribution FSO systems under a generalized pointing error model. IEEE Commun. Lett. 23(10), 1801–1805 (2019)

    Article  Google Scholar 

  41. ID281 Superconducting Nanowire (2019). https://www.idquantique.com/single-photon-systems/products/id281/

  42. S. Arnon, Quantum technology for optical wireless communication in data-center security and hacking, in Broadband Access Communication Technologies XIII, ed. by B.B. Dingel, K. Tsukamoto, S. Mikroulis. (SPIE, Bellingham, 2019)

    Google Scholar 

  43. Presentation by Jian-Wei Pan at TyQI (Trustworthy Quantum Information) conference. Shanghai, pp. 27–30 (2016)

    Google Scholar 

  44. First Quantum Satellite Successfully Launched (Austrian Academy of Sciences, Vienna, 2016)

    Google Scholar 

  45. V. Makarov, in Lecture at 2nd Russian quantum technologies school. Estosadok (2019)

    Google Scholar 

  46. R.J. Hughes, J.E. Nordholt, K.P. McCabe, R.T. Newell, C.G. Peterson, R.D. Somma, Network-centric quantum communications with application to critical infrastructure protection. arXiv:1305.0305

    Google Scholar 

  47. A. Poppe, M. Peev, O. Maurhart, Outline of the secoqc quantum key distribution network in Vienna. Int. J. Quantum Inf. 06(02), 209–218 (2008)

    Article  Google Scholar 

  48. M. Sasaki, M. Fujiwara, H. Ishizuka, et al., Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387 (2011)

    Google Scholar 

  49. D. Stucki, M. Legre, F. Buntschu, et al., Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011)

    Google Scholar 

  50. A.D. Hill, J. Chapman, C. Chopp, D.J. Gauthier, P. Kwiat, Drone-based quantum key distribution, in QCrypt (2017)

    Google Scholar 

  51. https://jcmit.net/diskprice.htm (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Slim Alouini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vybornyi, I., Trichili, A., Alouini, MS. (2021). Backflash Light as a Security Vulnerability in Quantum Key Distribution Systems. In: Le, K.N. (eds) Physical Layer Security. Springer, Cham. https://doi.org/10.1007/978-3-030-55366-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55366-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55365-4

  • Online ISBN: 978-3-030-55366-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics