Skip to main content

Physical Layer Security in Cache-Enabled Heterogeneous Cellular Networks

  • Chapter
  • First Online:
Physical Layer Security
  • 588 Accesses

Abstract

In this chapter, we discuss physical layer security in a cache-enabled heterogeneous cellular network comprised of a macro base station and multiple small base stations (SBSs). We jointly devise caching placement and file delivery for achieving secure and energy-efficient transmissions against randomly distributed eavesdroppers. Specifically, we propose a novel hybrid “most popular content” and “largest content diversity” caching placement policy to distribute files of different popularities. Depending on the availability and placement of the requested file, we employ three cooperative transmission schemes, namely distributed beamforming, frequency-domain orthogonal transmission, and best SBS relaying. We derive analytical expressions for the connection outage probability and secrecy outage probability for each transmission scheme. Afterwards, we design the optimal transmission rates and caching allocation successively for maximizing the overall secrecy throughput and secrecy energy efficiency, respectively. We eventually provide numerical results to verify the proposed theoretical analysis and to demonstrate the superiority of the proposed hybrid caching policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that there is no direct transmission link from the MBS to the subscriber due to a deep fading and a long distance.

  2. 2.

    If multiple subscribers send file requests to an SBS simultaneously, in order to avoid the inter-user interference, these subscribers can be served using some orthogonal multiple access methods, e.g., TDMA and FDMA.

  3. 3.

    Typical examples include a regular user in the network, who has no authorization to access the content sent to others in a specific time slot and is thus treated as a potential eavesdropper. Although it is difficult for a BS to obtain the eavesdropper’s instantaneous CSI, the BS is still capable to learn the eavesdropper’ statistic CSI by collecting and analyzing an exceedingly large amount of information exchanging between the two parties during the other time slots.

  4. 4.

    With DBF, each SBS only requires the local CSI of itself instead of the global CSI, which greatly lowers the system overhead.

  5. 5.

    Throughout this paper, the letters “D,” “F,” and “B” refer to the DBF, FOT, and BSR transmission schemes, respectively.

References

  1. X. Wang, M. Chen, T. Taleb, A. Ksentini, V. Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)

    Article  Google Scholar 

  2. K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, G. Caire, FemtoCaching: wireless content delivery through distributed caching helpers. IEEE Trans. Inf. Theory 59(12), 8402–8413 (2013)

    Article  MathSciNet  Google Scholar 

  3. Z. Chen, J. Lee, M. Kountouris, Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Trans. Wireless Commun. 16(5), 3401–3415 (2017)

    Article  Google Scholar 

  4. A. Liu, V. Lau, Cache-enabled opportunistic cooperative MIMO for video streaming in wireless systems. IEEE Trans. Signal Process. 62(2), 390–402 (2014)

    Article  MathSciNet  Google Scholar 

  5. G. Paschos, E. Baştuğ, I. Land, G. Caire, M. Debbah, Wireless caching: technical misconceptions and business barriers. IEEE Commun. Mag. 54(8), 16–22 (2016)

    Article  Google Scholar 

  6. H.V. Poor, Information and inference in the wireless physical layer. IEEE Wireless Commun. 19(1), 40–47 (2012)

    Article  Google Scholar 

  7. A.D. Wyner, The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  8. H.-M. Wang, T.-X. Zheng, Physical Layer Security in Random Cellular Networks (Springer, Singapore, 2016)

    Book  Google Scholar 

  9. N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M.D. Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53(4), 20–27 (2015)

    Article  Google Scholar 

  10. X. Zhou, R. Ganti, J. Andrews, A. Hjørungnes, On the throughput cost of physical layer security in decentralized wireless networks. IEEE Trans. Wireless Commun. 10(8), 764–2775 (2011)

    Article  Google Scholar 

  11. T.-X. Zheng, H.-M. Wang, J. Yuan, D. Towsley, M.H. Lee, Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans. Commun. 63(11), 347–4362 (2015)

    Article  Google Scholar 

  12. H.-M. Wang, T.-X. Zheng, J. Yuan, D. Towsley, M.H. Lee, Physical layer security in heterogeneous cellular networks. IEEE Trans. Commun. 64(3), 1204–1219 (2016)

    Article  Google Scholar 

  13. T.-X. Zheng, H.-M. Wang, Q. Yang, M.H. Lee, Safeguarding decentralized wireless networks using full-duplex jamming receivers. IEEE Trans. Wireless Commun. 16(1), 278–292 (2017)

    Article  Google Scholar 

  14. T.-X. Zheng, H.-M. Wang, J. Yuan, Z. Han, M.H. Lee, Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy. IEEE Trans. Wireless Commun. 16(6), 3827–3839 (2017)

    Article  Google Scholar 

  15. T.-X. Zheng, H.-M. Wang, J. Yuan, Physical-layer security in cache-enabled cooperative small cell networks against randomly distributed eavesdroppers. IEEE Trans. Wireless Commun. 17(9), 5945–5958 (2018)

    Article  Google Scholar 

  16. T.-X. Zheng, H.-M. Wang, D.W.K. Ng, J. Yuan, Multi-antenna covert communications in random wireless networks. IEEE Trans. Wireless Commun. 18(3), 1974–1987 (2019)

    Article  Google Scholar 

  17. M.A. Maddah-Ali, U. Niesen, Fundamental limits of caching. IEEE Trans. Inf. Theory 60(5), 2856–2867 (2014)

    Article  MathSciNet  Google Scholar 

  18. A. Sengupta, R. Tandon, T.C. Clancy, Fundamental limits of caching with secure delivery. IEEE Trans. Inf. Forensics Secur. 10(2), 355–370 (2015)

    Article  Google Scholar 

  19. Z.H. Awan, A. Sezgin, Fundamental limits of caching in D2D networks with secure delivery, in Proceedings of the IEEE ICC Workshop on Wireless Physical Layer Security, London (2015)

    Google Scholar 

  20. M. Gerami, M. Xiao, S. Salimi, M. Skoglund, Secure partial repair in wireless caching networks with broadcast channels, in Proceedings of the IEEE Conference on Communications and Network Security (2015), pp. 353–360

    Google Scholar 

  21. F. Gabry, V. Bioglio, I. Land, On edge caching with secrecy constraints, in Proceedings of the IEEE International Conference on Communications (ICC), Kuala Lumpur (2016)

    Google Scholar 

  22. L. Xiang, D.W. K. Ng, R. Schober, V.W.S. Wong, Cache-enabled physical layer security for video streaming in backhaul-limited cellular networks. IEEE Trans. Wireless Commun. 17(2), 736–751 (2017)

    Article  Google Scholar 

  23. L. Xiang, D.W.K. Ng, R. Schober, V.W.S. Wong, Secure video streaming in heterogeneous small cell networks with untrusted cache helpers. IEEE Trans. Wireless Commun. 17(4), 2645–2661 (2018)

    Article  Google Scholar 

  24. T.-X. Zheng, H.-M. Wang, J. Yuan, Secure and energy-efficient transmissions in cache-enabled heterogeneous cellular networks: performance analysis and optimization. IEEE Trans. Commun. 66(11), 5554–5567 (2018)

    Article  Google Scholar 

  25. T.-X. Zheng, H.-M. Wang, F. Liu, M.H. Lee, Outage constrained secrecy throughput maximization for DF relay networks. IEEE Trans. Commun. 63(5), 1741–1755 (2015)

    Article  Google Scholar 

  26. I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey, D. Zwillinger, S. Technica, Table of Integrals, Series, and Products, 7th edn. (Academic Press, New York, 2007)

    Google Scholar 

  27. L. Zheng, D. Tse, Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory 49(5), 1073–1096 (2003)

    Article  Google Scholar 

  28. S.N. Chiu, D. Stoyan, W. Kendall, J. Mecke, Stochastic Geometry and its Applications, 3rd edn. (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  29. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhong Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, TX., Yuan, J. (2021). Physical Layer Security in Cache-Enabled Heterogeneous Cellular Networks. In: Le, K.N. (eds) Physical Layer Security. Springer, Cham. https://doi.org/10.1007/978-3-030-55366-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55366-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55365-4

  • Online ISBN: 978-3-030-55366-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics