Skip to main content

BiqBin: Moving Boundaries for NP-hard Problems by HPC

  • 257 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 902)

Abstract

In this paper we present a parallel Branch and Bound (B&B) algorithm to solve the Stable Set Problem, which is a well-known combinatorial optimization problem. The algorithm is based on tight semidefinite programming bounds. Numerical results, based on using up to 192 CPU cores, show that this algorithm scales well.

This algorithm is available as a part of the online BiqBin solver, which enables online submissions of problem instances. After submission, it automatically generates computational jobs and runs them using the high-performance computer available at University of Ljubljana. BiqBin demonstrates how to bring HPC closer to specific user community – in our case the mathematical optimization community.

Keywords

  • High performance computing
  • Stable Set Problem
  • Online solver
  • Mathematical optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55347-0_28
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55347-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    http://www.euro-math-soc.eu/system/files/news/MathematicsforDigitalScience.pdf.

  2. 2.

    https://www.hipeac.net/v17.

  3. 3.

    http://www.prace-ri.eu/17th-call-for-proposals-for-project-access/.

  4. 4.

    https://ismp2018.sciencesconf.org/.

  5. 5.

    https://www.siam.org/meetings/op17/.

  6. 6.

    http://biqbin.fis.unm.si.

References

  1. Intel Math Kernel Library. Reference Manual. Intel Corporation (2009)

    Google Scholar 

  2. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166. Springer, New York (2012)

    Google Scholar 

  3. Boyd, S., Mattingley, J.: Branch and Bound Methods (2007)

    Google Scholar 

  4. Clausen, J.: Branch and Bound Algorithms - Principles and Examples, pp. 1–30. Department of Computer Science, University of Copenhagen (1999)

    Google Scholar 

  5. Cottle, R.W., Thapa, M.N.: Linear and Nonlinear Optimization. International Series in Operations Research & Management Science. Springer, New York (2017)

    CrossRef  Google Scholar 

  6. Message Passing Interface Forum: MPI: A message-passing interface standard. Technical report, Knoxville, TN, USA (1994)

    Google Scholar 

  7. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics, vol. 103. Springer, New York (2013)

    Google Scholar 

  8. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11–13, 1993, vol. 26. American Mathematical Soc. (1996)

    Google Scholar 

  9. Krislock, N., Malick, J., Roupin, F.: BiqCrunch User Guide (2014)

    Google Scholar 

  10. Lasserre, J.B.: A max-cut formulation of 0/1 programs. Oper. Res. Lett. 44(2), 158–164 (2016)

    MathSciNet  CrossRef  Google Scholar 

  11. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20, 336–356 (2009)

    MathSciNet  CrossRef  Google Scholar 

  12. Povh, J.: Semidefinite approximations for quadratic programs over orthogonal matrices. J. Global Optim. 48(3), 447–463 (2009)

    MathSciNet  CrossRef  Google Scholar 

  13. Povh, J.: Contribution of copositive formulations to the graph partitioning problem. Optimization 62(1), 71–83 (2013)

    MathSciNet  CrossRef  Google Scholar 

  14. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)

    MathSciNet  CrossRef  Google Scholar 

  15. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006)

    MathSciNet  CrossRef  Google Scholar 

  16. Rendl, F., Rinaldi, G., Wiegele, A.: BiqMac – a solver for binary quadratic and max-cut problems (2006). http://BiqMac.aau.at/

  17. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2, Ser. A), 307–335 (2010)

    MathSciNet  CrossRef  Google Scholar 

  18. Sanderson, C., Curtin, R.: Armadillo: a template-based c++ library for linear algebra. J. Open Source Soft. 1(2), 26 (2016)

    CrossRef  Google Scholar 

  19. Rui, X., Donald Wunsch, I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    CrossRef  Google Scholar 

  20. Yang, X.S.: Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics. Cambridge International Science Publishing (2008)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank to Slovenian Research Agency (ARRS) and to Austrian Science Foundation (FWF) for support via joint Austrian-Slovenian project nr. N1-0057 and via programs P2-0256 and P1-0383.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Povh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hrga, T., Lužar, B., Povh, J., Wiegele, A. (2021). BiqBin: Moving Boundaries for NP-hard Problems by HPC. In: Dimov, I., Fidanova, S. (eds) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-55347-0_28

Download citation