Skip to main content

Iris Recognition Using Localized Zernike Features with Partial Iris Pattern

  • Conference paper
  • First Online:
New Trends in Information and Communications Technology Applications (NTICT 2020)

Abstract

Iris recognition is an attractive field of research for the purpose of identifying people based on unique patterns extracted from their iris. Accurate iris recognition requires high quality of iris images with the most discriminating features and minimum variation level. Analyzing and encoding of an iris image captured by a real (i.e., non-ideal) imaging system is a crucial issue. This paper presents a new iris pattern for human identification; i.e., partial iris pattern, instead of the whole iris. Then, a feature-set consisting of Gabor and Zernike moments is used for feature extraction and matching. The features are calculated to the ninth order. Two datasets are used for testing and evaluating the proposed technique. The experiential results show that the proposed technique is reliable, promising, and can be applied in real world imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., Xu, X.: Revolutionary information system application in biometrics. In: Proceedings, 2009 International Conference on Networking and Digital Society (2009)

    Google Scholar 

  2. Tan, C.-W., Kumar, A.: Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE Trans. Image Process. 23, 3962–3974 (2014)

    Article  MathSciNet  Google Scholar 

  3. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19, 721–732 (1997)

    Article  Google Scholar 

  4. Xie, X., Lam, K.-M.: Face recognition under varying illumination based on a 2D face shape model. Pattern Recogn. 38, 221–230 (2005)

    Article  Google Scholar 

  5. Kaur, B., Singh, S., Kumar, J.: Iris recognition using Zernike moments and polar harmonic transforms. Arab. J. Sci. Eng. 43, 7209–7218 (2018). https://doi.org/10.1007/s13369-017-3057-2

    Article  Google Scholar 

  6. Tomeo-Reyes, I., Ross, A., Clark, A.D., et al.: A biomechanical approach to iris normalization. In: Proceedings, 2015 International Conference on Biometrics (ICB) (2015)

    Google Scholar 

  7. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85, 1348–1363 (1997)

    Article  Google Scholar 

  8. Scheuermann, D., Schwiderski-Grosche, S., Struif, B.: Usability of biometrics in relation to electronic signatures, GMD-Forschungszentrum Informations technik Sankt Augustin (2000)

    Google Scholar 

  9. Lin, Z., Lu, B.: Iris recognition method based on the optimized Gabor filters. In: Proceedings, 2010 3rd International Congress on Image and Signal Processing (2010)

    Google Scholar 

  10. Flom, L., Safir, A.: Iris recognition system, Google Patents (1987)

    Google Scholar 

  11. Johnson, R.: Can iris patterns be used to identify people. Los Alamos National Laboratory, CA, Chemical and Laser Sciences Division, Rep LA-12331-PR (1991)

    Google Scholar 

  12. Daugman, J.: High confidence personal identification by rapid video analysis of iris texture. In: Proceedings, Proceedings 1992 International Carnahan Conference on Security Technology: Crime Countermeasures (1992)

    Google Scholar 

  13. Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993)

    Article  Google Scholar 

  14. Daugman, J: Biometric personal identification system based on iris analysis, in, USA Patents (1994)

    Google Scholar 

  15. Daugman, J.: How iris recognition works. In: The Essential Guide to Image Processing, pp. 715–739. Elsevier (2009)

    Google Scholar 

  16. Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46, 1185–1188 (1998)

    Article  Google Scholar 

  17. Te Chu, C., Ching-Han, C.: High performance iris recognition based on 1-D circular feature extraction (2005)

    Google Scholar 

  18. Hosny, K.M., Hafez, M.A.: An algorithm for fast computation of 3D Zernike moments for volumetric images. Math. Probl. Eng. 2012, 17 (2012)

    Article  MathSciNet  Google Scholar 

  19. Pirasteh, A., Maghooli, K., Mousavizadeh, S.: Iris recognition using localized Zernike’s feature and SVM. Int. Arab. J. Inf. Technol. (IAJIT) 13, 552–558 (2016)

    Google Scholar 

  20. Flusser, J.: Moment invariants in image analysis. In: Proceedings of World Academy of Science, Engineering and Technology (2006)

    Google Scholar 

  21. Chen, Z., Sun, S.-K.: A Zernike moment phase-based descriptor for local image representation and matching. IEEE Trans. Image Process. 19, 205–219 (2009)

    Article  MathSciNet  Google Scholar 

  22. Rai, H., Yadav, A.: Iris recognition using combined support vector machine and Hamming distance approach. Expert Syst. Appl. 41, 588–593 (2014)

    Article  Google Scholar 

  23. Liu, Y., He, F., Zhu, X., et al.: The improved characteristics of bionic gabor representations by combining with sift key-points for iris recognition. J. Bionic Eng. 12, 504–517 (2015). https://doi.org/10.1016/S1672-6529(14)60141-4

    Article  Google Scholar 

  24. Bhateja, A.K., Sharma, S., Chaudhury, S., et al.: Iris recognition based on sparse representation and k-nearest subspace with genetic algorithm. Pattern Recogn. Lett. 73, 13–18 (2016)

    Article  Google Scholar 

  25. Noh, S.-I., Pae, K., Lee, C., et al.: Multiresolution independent component analysis for its iris identification. In: Proceedings, ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications (2002)

    Google Scholar 

  26. Ma, L., Wang, Y., Tan, T.: Iris recognition using circular symmetric filters. In: Proceedings, Object Recognition Supported by User Interaction for Service Robots (2002)

    Google Scholar 

  27. CASIA-Iris database, Institute of Automation, Chinese Academy of Sciences (2019)

    Google Scholar 

  28. MMU-Iris Database, Multimedia-University Malaysia (2016)

    Google Scholar 

  29. WVU-Iris Database, West-Virginia-University (2019)

    Google Scholar 

  30. Masek, L.: Recognition of human iris patterns for biometric identification. Master’s thesis, University of Western Australia (2003)

    Google Scholar 

  31. Bakštein, E.: IRIS recognition (2019). (http://www.mlmu.cz/wp-content/uploads/2014/09/Iris-MLMU.pdf)

  32. Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71, 1771–1787 (2008)

    Article  Google Scholar 

  33. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  34. Teague, M.R.: Image analysis via the general theory of moments. JOSA 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  35. Hse, H., Newton, A.R.: Sketched symbol recognition using zernike moments, Proceedings. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan A. Naji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naji, S.A., Tornai, R., Lafta, J.H., Hussein, H.L. (2020). Iris Recognition Using Localized Zernike Features with Partial Iris Pattern. In: Al-Bakry, A., et al. New Trends in Information and Communications Technology Applications. NTICT 2020. Communications in Computer and Information Science, vol 1183. Springer, Cham. https://doi.org/10.1007/978-3-030-55340-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55340-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55339-5

  • Online ISBN: 978-3-030-55340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics