Skip to main content

Parallel Technologies in Unsteady Problems of Soil Dynamics

  • Conference paper
  • First Online:
Book cover Parallel Computational Technologies (PCT 2020)

Abstract

The paper focuses on parallel technologies in numerical modeling of unsteady soil dynamics for the trenchless technology of well construction. The consolidated cores being formed at the pulse pressing of a hollow pipe into the soil is a feature of the trenchless technology used for underground pipeline laying. In contrast to the soil that is simulated as a granular medium, the consolidated core is simulated as a porous medium due to its shear stresses. The equations of granular medium dynamics are approximated by a completely implicit scheme following the finite volume method, while the equations of porous medium dynamics are approximated by an explicit scheme based on the WENO-Runge-Kutta method. Very fast processes of forming and breaking a consolidated plug require using an explicit scheme. Nonlinear models of porous core medium and models of granular soil medium involve thermal processes and are thermodynamically compatible. In this work, we examine the patterns and efficiency of a parallel algorithm in reference to the used differential approximation methods of the equations describing the continuous heterophase media mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perepechko, Y., Kireev, S., Sorokin, K., Imomnazarov, S.: Modeling of nonstationary two-phase flows in channels using parallel technologies. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2018. CCIS, vol. 910, pp. 266–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99673-8_19

    Chapter  Google Scholar 

  2. Perepechko, Y., Kireev, S., Sorokin, K., Imomnazarov, S.: Use of parallel technologies for numerical simulations of unsteady soil dynamics in trenchless borehole Drilling. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2019. CCIS, vol. 1063, pp. 197–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28163-2_14

    Chapter  Google Scholar 

  3. Smolyanitsky, B.N., et al.: Modern technologies for the construction of extended wells in soil massifs and technical means for controlling their trajectories. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2016)

    Google Scholar 

  4. Kondratenko, A.S., Petreev, A.M.: Features of the earth core removal from a pipe under combined vibro-impact and static action. J. Min. Sci. 44(6), 559–568 (2008). https://doi.org/10.1007/s10913-008-0063-5

    Article  Google Scholar 

  5. Grabe, J., Pucker, T.: Improvement of bearing capacity of vibratory driven open-ended tubular piles. In: Meyer, V. (ed.) Proceedings of 3rd International Symposium on Frontiers in Offshore Geotechnics 2015 in Oslo (Norway), vol. 1, pp. 551–556. Taylor & Francis Group, London (2015)

    Google Scholar 

  6. Labenski, J., Moormann, C., Ashrafi, J., Bienen, B.: Simulation of the plug inside open steel pipe piles with regards to different installation methods. In: Kuliešius, V., Bondars, K., Ilves, P. (eds.) Proceedings of 13th Baltic Sea Geotechnical Conference, pp. 223–230, Vilnius Gediminas Technical University (2016). https://doi.org/10.3846/13bsgc.2016.034

  7. Danilov, B.B., Kondratenko, A.S., Smolyanitsky, B.N., Smolentsev, A.S.: Improving the technology of drilling wells in the soil by the method of forcing. Phys. Techn. Probl. Devel. Mineral Resour. 3, 57–64 (2017)

    Google Scholar 

  8. Khalatnikov, I.M.: An Introduction to the Theory of Superfluidity. W.A. Benjamin, New York (1965)

    Google Scholar 

  9. Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Springer, Boston (2003). https://doi.org/10.1007/978-1-4757-5117-8

    Book  MATH  Google Scholar 

  10. Dorovsky, V.N.: Mathematical models of two-velocity media. I. Math. Comput. Model. 21(7), 17–28 (1995). https://doi.org/10.1016/0895-7177(95)00028-Z

    Article  MathSciNet  MATH  Google Scholar 

  11. Dorovsky, V.N., Perepechko, Y.V.: Mathematical models of two-velocity media. II. Math. Comput. Model. 24(10), 69–80 (1996). https://doi.org/10.1016/S0895-7177(96)00165-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Arun Manohar, G., Vasu, V., Srikanth, K.: Modeling and simulation of high redundancy linear electromechanical actuator for fault tolerance. In: Srinivasacharya, D., Reddy, K.S. (eds.) Numerical Heat Transfer and Fluid Flow. LNME, pp. 65–71. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1903-7_9

    Chapter  Google Scholar 

  13. Date, A.W.: Introduction to Computational Fluid Dynamic. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  14. Romenski, E., Drikakis, D., Toro, E.F.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42(1), 68–95 (2010). https://doi.org/10.1007/s10915-009-9316-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Perepechko, Y.V., Romenski, E.I., Reshetova, G.V.: Modeling of compressible multiphase flow through porous elastic medium. Seismic Technol. 4, 78–84 (2014)

    Google Scholar 

  16. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE. report No. 97-65 (1997)

    Google Scholar 

  17. Dorovsky, V.N., Perepechko, Y.V.: Hydrodynamic model of the solution in fractured porous media. Russ. Geol. Geophys. 9, 123–134 (1996)

    Google Scholar 

  18. Romenski, E.I., Perepechko, Y.V., Reshetova, G.V.: Modeling of multiphase flow in elastic porous media based on thermodynamically compatible system theory. In: Proceedings of the 14th European Conference on the Mathematics of Oil Recovery (Catania, Italy, 8–11 September). European Association of Geoscientists and Engineers (2014)

    Google Scholar 

  19. Wang, J.P., Zhang, J.F., Qu, Z.G., He, Y.L., Tao, W.Q.: Comparison of robustness and efficiency for SIMPLE and CLEAR algorithms with 13 high-resolution convection schemes in compressible flows. Numer. Heat Transfer, Part B 66, 133–161 (2014). https://doi.org/10.1080/10407790.2014.894451

    Article  Google Scholar 

  20. Yeoh, G.H., Tu, J.: Computational Techniques for Multi-phase Flows. Butterworth-Heinemann, Oxford (2010). https://doi.org/10.1016/B978-0-08-046733-7.00003-5

  21. Dorovsky, V.N., Romenski, E.I., Fedorov, A.I., Perepechko, Y.V.: Resonance method for measuring the permeability of rocks. Russ. Geol. Geophys. 7, 950–961 (2011)

    Google Scholar 

  22. PETSc: Portable, Extensible Toolkit for Scientific Computation. https://www.mcs.anl.gov/petsc

  23. MKL, Intel® Math Kernel Library. http://software.intel.com/en-us/intel-mkl

  24. MVS-10P cluster, JSCC RAS. http://www.jscc.ru

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury V. Perepechko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perepechko, Y.V., Kireev, S.E., Sorokin, K.E., Kondratenko, A.S., Imomnazarov, S.K. (2020). Parallel Technologies in Unsteady Problems of Soil Dynamics. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2020. Communications in Computer and Information Science, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-55326-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55326-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55325-8

  • Online ISBN: 978-3-030-55326-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics