Skip to main content

Computers and Thought

  • Chapter
  • First Online:
Computers, People, and Thought
  • 374 Accesses

Abstract

So began the rather caustic (some might even say misogynistic) introduction by Dr. Uttley to the influential Symposium on the Mechanisation of Thought Processes (Blake and Uttley 1959), held in England in November 1958. (The N.P.L. in the above quote refers to the U.K. National Physical Laboratory.) To the modern perspective this viewpoint might indeed appear a tad misogynistic, but we should perhaps approach this from the perspective of the late 1950s, when the vast majority of researchers and innovators in the field of computation and the (newly christened) AI field were male. This is a particularly interesting perspective as it was, in fact, mainly females that were employed to operate the early mechanical calculators in the 1930s and 1940s. However, the history of people as computers goes back well before this to the seventeenth century and the numerical calculation of the orbital trajectory of Halley’s comet (Grier 2001). Also, in many cases these pioneering human computers were men or boys.

Strong AI holds that a computing machine with the appropriate functional organization (e.g. a stored-program computer with the appropriate program) has a mind that perceives, thinks, and intends like a human mind

Philosophy of Science –An Encyclopaedia—on the connection between computation and thinking (Sarkar and Pfeifer 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://news.carlsonwagonlit.com/pressreleases/in-human-vs-machine-cwt-study-finds-two-thirds-of-travelers-prefer-machines-when-booking-air-travel-2876426

  2. 2.

    https://www.checkout.ie/retail-intelligence/six-10-shoppers-prefer-self-service-checkouts-cashier-checkouts-54113

  3. 3.

    http://www.cogsgame.com/

References

  • Amari, S. I. (1977). Neural theory of association and concept-formation. Biological cybernetics, 26(3), 175-185.

    MATH  Google Scholar 

  • Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5), 834-846.

    Google Scholar 

  • Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2001). Winning Ways for your Mathematical Plays. 4 vols. (2nd ed.). A K Peters Ltd.

    Google Scholar 

  • Blake D. V., & Uttley A. M. (eds.) (1959). Proceedings of the Symposium on Mechanisation of Thought Processes, Vols. 1 and 2, London: Her Majesty’s Stationary Office, 1959.

    Google Scholar 

  • Bourg, D. M., & Seemann, G. (2004). AI for game developers. O’Reilly Media, Inc.

    Google Scholar 

  • Brooks, R. A. (1991). Intelligence without representation. Artificial intelligence, 47(1-3), 139-159.

    Google Scholar 

  • Buckland, M. (2005). Programming Game Al by Example. Jones & Bartlett Learning.

    Google Scholar 

  • Campbell, M., Hoane, A. J., & Hsu, F. H. (2002). Deep blue. Artificial intelligence, 134(1-2), 57-83.

    MATH  Google Scholar 

  • Christian, B. (2011). The most human human. Viking, Great Britain.

    Google Scholar 

  • Descartes, R. (1837). Discourse on Method [Translated from French: Discours de la methode].

    Google Scholar 

  • Devasena, C. L., Sumathi, T., & Hemalatha, M. (2011). An experiential survey on image mining tools, techniques and applications. In International Journal on Computer Science and Engineering (IJCSE).

    Google Scholar 

  • Donovan, T., & Garriott, R. (2010). Replay: The history of video games. Lewes: Yellow Ant.

    Google Scholar 

  • Eaton, M. (2015). Evolutionary Humanoid Robotics. Springer Berlin Heidelberg.

    Google Scholar 

  • Eccles, J. C. (1973). The understanding of the brain. McGraw-Hill.

    Google Scholar 

  • Farley, B.G., & Clark, W.A. (1954). Simulation of self-organizing systems by digital computer. Transactions of the IRE Professional Group on Information Theory, 4(4), 76-84.

    MathSciNet  Google Scholar 

  • Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine learning, 2(2), 139-172.

    Google Scholar 

  • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, BioL Cybem. 36 (1980) 193-202.

    MATH  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press.

    MATH  Google Scholar 

  • Grier, D. A. (2001). Human computers: the first pioneers of the information age. Endeavour, 25(1), 28-32.

    Google Scholar 

  • Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, Vol. 87, No. 1, pp 1-51.

    Google Scholar 

  • Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100-107.

    Google Scholar 

  • Harvey, I. (2013). Perspectives on Artificial Intelligence: Three Ways to Be Smart. In SmartData (pp. 27-38). Springer, New York, NY.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley, New York.

    Google Scholar 

  • Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., ... & Zwitter, A. (2017). Digitale Demokratie statt Datendiktatur. In Unsere digitale Zukunft (pp. 3-21). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.

    MathSciNet  MATH  Google Scholar 

  • Judd, J. S. (1990). Neural network design and the complexity of learning. MIT press.

    Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics, 43(1), 59-69.

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In Dokl. Akad. Nauk. SSSR, vol. 114, pp. 953-956.

    MathSciNet  MATH  Google Scholar 

  • Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial intelligence, 27(1), 97-109.

    MathSciNet  MATH  Google Scholar 

  • Korf, R. E., & Zhang, W. (2000, July). Divide-and-conquer frontier search applied to optimal sequence alignment. In AAAI/IAAI (pp. 910-916).

    Google Scholar 

  • Li, X., Shi, M., & Wang, X. S. (2019). Video mining: Measuring visual information using automatic methods. International Journal of Research in Marketing, 36(2), 216-231.

    Google Scholar 

  • Luger, G. F. (2009). Artificial intelligence: structures and strategies for complex problem solving. Pearson education.

    Google Scholar 

  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

    MathSciNet  MATH  Google Scholar 

  • Michie, D., & Chambers, R. A. (1968). BOXES: An experiment in adaptive control. Machine intelligence, 2(2), 137-152.

    MATH  Google Scholar 

  • Millington, I., & Funge, J. (2009). Artificial intelligence for games. CRC Press.

    Google Scholar 

  • Minsky, M. (1954). Theory of neural-analog reinforcement systems and its application to the brain-model problem. Princeton University (Ph.D dissertation).

    Google Scholar 

  • Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8-30.

    MathSciNet  Google Scholar 

  • Minsky, M. (1967). Computation: finite and infinite machines. Prentice-Hall, Inc.

    MATH  Google Scholar 

  • Minsky, M., & Papert, S. (1969). Perceptrons: An lntroduction to Computational Geometry. MIT press

    Google Scholar 

  • Minsky, M., & Papert, S. (1988). Perceptrons (expanded edition). MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Najafabadi, M. K., Mohamed, A. H., & Mahrin, M. N. R. (2019). A survey on data mining techniques in recommender systems. Soft Computing, 23(2), 627-654.

    Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

    Google Scholar 

  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. Elsevier.

    Google Scholar 

  • Rabin, S. (Ed.). (2002). AI game programming wisdom. Charles River Media.

    Google Scholar 

  • Rochester, N., Holland, J., Haibt, L., & Duda, W. (1956). Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Transactions on information Theory, 2(3), 80-93.

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533.

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1986). Parallel Distributed Processing, Vol. 1. and Vol. 2. MIT press, Cambridge MA.

    Google Scholar 

  • Russell, S., & Norvig, P. (2010). Artificial Intelligence: A modern approach. 3rd Edition. Pearson education.

    MATH  Google Scholar 

  • Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229.

    MathSciNet  Google Scholar 

  • Sarkar S. & Pfeifer J.(eds.) (2006) Philosophy of Science –An Encyclopaedia. Routledge.

    Google Scholar 

  • Sejnowski, T. J., and Rosenberg, C.R. (1986). NETtalk: A parallel network that learns to read aloud. The Johns Hopkins University EE and CS Tech. Rep. IHU/EECS-86/01.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

    MathSciNet  MATH  Google Scholar 

  • Shannon, C. E. (1950). Programming a computer for playing chess. The London, Edinburgh

    MATH  Google Scholar 

  • Singh, B., & Singh, H. K. (2010). Web data mining research: a survey. In 2010 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-10). IEEE.

    Google Scholar 

  • Slagle, James R. "A heuristic program that solves symbolic integration problems in freshman calculus." Journal of the ACM (JACM) 10.4 (1963): 507-520.

    MATH  Google Scholar 

  • Slocum, J., & Sonneveld, D. (2006). The 15 Puzzle: How it Drove the World Crazy: the Puzzle that Started the Craze of 1880; how Amercia’s Greatest Puzzle Designer, Sam Loyd, Fooled Everyone for 115 Years. Slocum Puzzle Foundation.

    Google Scholar 

  • Stanley, K. O., & Lehman, J. (2015). Why greatness cannot be planned: The myth of the objective. Springer.

    Google Scholar 

  • Steinerberger, S. (2015). On the number of positions in chess without promotion. International Journal of Game Theory, 44(3), 761-767.

    MathSciNet  MATH  Google Scholar 

  • Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on (pp. 3310-3317). IEEE.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). Cambridge: MIT press.

    MATH  Google Scholar 

  • von Neumann, J. (1928): “Zur Theorie der Gesellschaftsspiele.” Mathematische Annalen, 100, 1928, pp. 295–320.

    MathSciNet  MATH  Google Scholar 

  • Wang, M., & Deng, W. (2018). Deep face recognition: A survey. arXiv preprint arXiv:1804.06655.

    Google Scholar 

  • Werbos, P. (1974). Beyond regression: new fools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University.

    Google Scholar 

  • Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits (No. TR-1553-1). Stanford Univ. CA Stanford Electronics Labs.

    Google Scholar 

  • Wiener, N. (1954). The Human Use of Human Beings. Houghton Mifflin Company, New York.

    Google Scholar 

  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

    Google Scholar 

  • Zurada, J. M. (1992). Introduction to artificial neural systems. St. Paul: West.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eaton, M. (2020). Computers and Thought. In: Computers, People, and Thought. Springer, Cham. https://doi.org/10.1007/978-3-030-55300-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55300-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55299-2

  • Online ISBN: 978-3-030-55300-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics