Skip to main content

Summary and Prospects

  • Chapter
  • First Online:
Physics and Evolution of Supernova Remnants

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1155 Accesses

Abstract

We have discussed the many aspects of the physics and evolution of supernova remnants including discussions on how the properties of supernova remnants relate to the properties of supernova explosions (e.g. Chaps. 9 and 7). The material presented shows the many discoveries made and insights that have been obtained over the last two to three decades. This period corresponds to the coming of age of X-ray imaging spectroscopy—with Chandra, XMM-Newton, and Suzaku—high-energy (GeV) and very-high energy γ-ray astronomy—with the Fermi and AGILE satellite missions and with imaging atmospheric Cherenkov telescopes (IACTs; H.E.S.S., MAGIC, VERITAS)—and three major infrared mission Spitzer, Herschel, and AKARI. Our present knowledge of supernova remnants is based to a large extent on observations done with these observing facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.lsst.org.

  2. 2.

    https://roman.gsfc.nasa.gov.

  3. 3.

    For updates: https://www.mpe.mpg.de/eROSITA.

  4. 4.

    https://global.jaxa.jp/projects/sas/xrism.

  5. 5.

    The dispersion measure is defined as the column density of free electrons, \(DM\equiv \int n_{\mathrm {e}}dl\), which causes a frequency-dependent time delay in the arrival time of pulses.

References

  1. Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., et al. (2014). Physical Review Letters, 113, 101101.

    Article  ADS  Google Scholar 

  2. Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., et al. (2016). Physical Review Letters, 116, 061102.

    Article  ADS  MathSciNet  Google Scholar 

  3. Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., et al. (2017). The Astrophysical Journal, 848, L12.

    Article  ADS  Google Scholar 

  4. Accardo, L., Aguilar, M., Aisa, D., Alvino, A., Ambrosi, G., et al. (2014). Physical Review Letters, 113, 121101.

    ADS  Google Scholar 

  5. Actis, M., Agnetta, G., Aharonian, F., Akhperjanian, A., Aleksić, J., et al. (2011). Experimental Astronomy, 32, 193.

    ADS  Google Scholar 

  6. Adriani, O., et al. (2009). Nature, 458, 607.

    ADS  Google Scholar 

  7. Akeson, R., Armus, L., Bachelet, E., Bailey, V., et al. (2019). arXiv e-prints, arXiv:1902.05569

    Google Scholar 

  8. Alexander, K. D., Margutti, R., Blanchard, P. K., Fong, W., Berger, E., Hajela, A., et al. (2018). The Astrophysical Journal, 863, L18.

    Article  ADS  Google Scholar 

  9. Barcons, X., Barret, D., Decourchelle, A., den Herder, J. W., Fabian, A. C., Matsumoto, H., et al. (2017). Astronomische Nachrichten, 338, 153.

    Article  ADS  Google Scholar 

  10. Barret, D., Lam Trong, T., den Herder, J.-W., Piro, L., Cappi, M., Houvelin, J., et al. (2018). Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Proeedings of the SPIE (Vol. 10699, p. 106991G).

    Google Scholar 

  11. Bochenek, C. D., Ravi, V., Belov, K. V., Hallinan, G., Kocz, J., Kulkarni, S. R., et al. (2020). arXiv e-prints, arXiv:2005.10828.

    Google Scholar 

  12. di Sciascio, G., & Lhaaso Collaboration. (2016). Nuclear and Particle Physics Proceedings, 279–281, 166.

    Article  Google Scholar 

  13. Fransson, C., & Björnsson, C.-I. (1998). The Astrophysical Journal, 509, 861.

    ADS  Google Scholar 

  14. Freiburghaus, C., Rosswog, S., & Thielemann, F. K. (1999). The Astrophysical Journal, 525, L121.

    Article  ADS  Google Scholar 

  15. H. E. S. S. Collaboration, Abdalla, H., et al. (2019). Astronomy & Astrophysics, 626, A57.

    Article  Google Scholar 

  16. Israel, G. L., Esposito, P., Rea, N., Coti Zelati, F., Tiengo, A., Campana, S., et al. (2016). Monthly Notices of the Royal Astronomical Society, 457, 3448.

    Article  ADS  Google Scholar 

  17. Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy, R., & Willems, B. (2007). Physics Reports, 442, 75.

    Article  ADS  Google Scholar 

  18. Katz, U. F. (2006). Nuclear Instruments and Methods in Physics Research A, 567, 457.

    Article  ADS  Google Scholar 

  19. Lipari, P., & Vernetto, S. (2020). Astroparticle Physics, 120, 102441.

    Google Scholar 

  20. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. (2007). Science, 318, 777.

    Article  ADS  Google Scholar 

  21. Marcote, B., Paragi, Z., Hessels, J. W. T., Keimpema, A., van Langevelde, H. J., Huang, Y., et al. (2017). The Astrophysical Journal, 834, L8.

    Article  ADS  Google Scholar 

  22. Marcowith, A., Bret, A., Bykov, A., Dieckman, M. E., O’C Drury, L., Lembège, B., et al. (2016). Reports on Progress in Physics, 79, 046901.

    ADS  Google Scholar 

  23. Metzger, B. D., Berger, E., & Margalit, B. (2017). The Astrophysical Journal, 841, 14.

    Article  ADS  Google Scholar 

  24. Metzger, B. D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., et al. (2010). Monthly Notices of the Royal Astronomical Society, 406, 2650.

    Article  ADS  Google Scholar 

  25. Mignani, R. (2009). The Messenger, 138, 19.

    ADS  Google Scholar 

  26. Petroff, E., Hessels, J. W. T., & Lorimer, D. R. (2019). The Astronomy and Astrophysics Review, 27, 4.

    Article  ADS  Google Scholar 

  27. Powell, J., & Müller, B. (2019). Monthly Notices of the Royal Astronomical Society, 487, 1178.

    Article  ADS  Google Scholar 

  28. Punturo, M., Abernathy, M., Acernese, F., Allen, B., Andersson, N., et al. (2010). Classical and Quantum Gravity, 27, 194002.

    Article  ADS  Google Scholar 

  29. Resmi, L., Schulze, S., Ishwara-Chandra, C. H., Misra, K., Buchner, J., De Pasquale, M., et al. (2018). The Astrophysical Journal, 867, 57.

    Article  ADS  Google Scholar 

  30. Scholz, P., & Chime/Frb Collaboration. (2020). The Astronomer’s Telegram, 13681, 1.

    Google Scholar 

  31. Sonneborn, G., Temim, T., Williams, B. J., & Blair, W. P. (2015). American astronomical society meeting abstracts (Vol. 225).

    Google Scholar 

  32. Spitler, L. G., Scholz, P., Hessels, J. W. T., Bogdanov, S., Brazier, A., et al. (2016). Nature, 531, 202.

    Article  ADS  Google Scholar 

  33. Symbalisty, E., & Schramm, D. N. (1982). ApLet, 22, 143.

    ADS  Google Scholar 

  34. Tendulkar, S. P., Bassa, C. G., Cordes, J. M., Bower, G. C., Law, C. J., Chatterjee, S., et al. (2017). The Astrophysical Journal, 834, L7.

    Article  ADS  Google Scholar 

  35. Troja, E., Piro, L., Ryan, G., van Eerten, H., Ricci, R., Wieringa, M. H., et al. (2018). Monthly Notices of the Royal Astronomical Society, 478, L18.

    Article  ADS  Google Scholar 

  36. Vink, J., & Zhou, P. (2018). Galaxies, 6, 46.

    ADS  Google Scholar 

  37. Weisskopf, M. C., Silver, E. H., Kestenbaum, H. L., Long, K. S., & Novick, R. (1978). The Astrophysical Journal, 220, L117.

    Article  ADS  Google Scholar 

  38. Weisskopf, M. C., Ramsey, B., O’Dell, S., Tennant, A., Elsner, R., Soffitta, P., et al. (2016). In Proceedings of the SPIE. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray (Vol. 9905. p. 990517)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vink, J. (2020). Summary and Prospects. In: Physics and Evolution of Supernova Remnants. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-55231-2_14

Download citation

Publish with us

Policies and ethics