Skip to main content

Radiation Processes

  • Chapter
  • First Online:
Physics and Evolution of Supernova Remnants

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1182 Accesses

Abstract

Like for almost all distant astrophysical objects, our primary knowledge of supernova remnants comes from detecting the radiation they emit. Supernova remnants are true multiwavelength sources, with all parts of the electromagnetic spectrum providing important information on their various properties. Broadly speaking one can divide the radiation from supernova remnants in thermal and non-thermal emission. The thermal emission originates from the electrons and ions that have been shock-heated by either the blast wave or the reverse shock, and the electron energy distribution is Maxwellian. However, supernova remnants shocks also accelerate charged particles to an energy distribution that over large energy ranges can be approximated by a power-law distribution. These accelerated particles are responsible for the non-thermal emission, which in the past was almost synonymous for (radio) synchrotron radiation from relativistic electrons moving in a (weakly) magnetic field. In young supernova remnants and pulsar wind nebulae synchrotron radiation is detectable from the low frequency radio band to X-rays. Traditionally, most supernova remnants have been discovered through their radio synchrotron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., et al. (2014). Physical Review Letters, 113, 101101.

    Article  ADS  Google Scholar 

  2. Arias, M., Vink, J., de Gasperin, F., Salas, P., Oonk, J. B. R., & van Weeren, R. J. (2018). ArXiv e-prints.

    Google Scholar 

  3. Arnaud, K. A. (1996). Astronomical society of the pacific conference series. In G. H. Jacoby & J. Barnes (Eds.), XSPEC: The first ten years (Vol. 101, p. 17).

    Google Scholar 

  4. Arnaud, M., & Raymond, J. (1992). The Astrophysical Journal, 398, 394.

    Article  ADS  Google Scholar 

  5. Asvarov, A. I., Guseinov, O. H., Kasumov, F. K., & Dogel’, V. A. (1990). Astronomy & Astrophysics, 229, 196.

    Google Scholar 

  6. Band, I. M., Trzhaskovskaia, M. B., Verner, D. A., & Iakovlev, D. G. (1990). Astronomy & Astrophysics, 237, 267.

    ADS  Google Scholar 

  7. Beiersdorfer, P., Phillips, T., Jacobs, V. L., Hill, K. W., Bitter, M., von Goeler, S., et al. (1993). The Astrophysical Journal, 409, 846.

    Article  ADS  Google Scholar 

  8. Blumenthal, G. R., & Gould, R. J. (1970). Reviews of Modern Physics, 42, 237.

    ADS  Google Scholar 

  9. Borkowski, K. J., & Szymkowiak, A. E. (1997). The Astrophysical Journal, 477, L49+ .

    Google Scholar 

  10. Borkowski, K. J., Lyerly, W. J., & Reynolds, S. P. (2001). The Astrophysical Journal, 548, 820.

    Article  ADS  Google Scholar 

  11. Bradt, H. L., & Peters, B. (1950). Physical Review, 77, 54.

    Article  ADS  Google Scholar 

  12. Broersen, S., Vink, J., Miceli, M., Bocchino, F., Maurin, G., & Decourchelle, A. (2013). Astronomy & Astrophysics, 552, A9.

    Article  ADS  Google Scholar 

  13. DeLaney, T., Kassim, N. E., Rudnick, L., & Perley, R. A. (2014). The Astrophysical Journal, 785, 7.

    Article  ADS  Google Scholar 

  14. Dopita, M. A., & Sutherland, R. S. (2003). Astrophysics of the diffuse universe. Berlin: Springer.

    Book  Google Scholar 

  15. Gabriel, A. H., & Jordan, C. (1969). Monthly Notices of the Royal Astronomical Society, 145, 241.

    Article  ADS  Google Scholar 

  16. Ginzburg, V. L., & Syrovatskii, S. I. (1965). Annual Review of Astronomy and Astrophysics, 3, 297

    ADS  Google Scholar 

  17. Hamilton, A. J. S., Chevalier, R. A., & Sarazin, C. L. (1983). The Astrophysical Journal Supplement Series, 51, 115.

    Article  ADS  Google Scholar 

  18. Haug, E. (1997). Astronomy and Astrophysics, 326, 417.

    ADS  Google Scholar 

  19. Helfand, D. J., Becker, R. H., White, R. L., Fallon, A., & Tuttle, S. (2006). Astronomical Journal, 131, 2525.

    Article  ADS  Google Scholar 

  20. Hinton, J. A., & Hofmann, W. (2009). Annual Review of Astronomy and Astrophysics, 47, 523.

    Article  ADS  Google Scholar 

  21. Hoffman, J., & Draine, B. T. (2016). The Astrophysical Journal, 817, 139.

    Article  ADS  Google Scholar 

  22. Hubbell, J. H., Trehan, P. N., Singh, N., Chand , B., Mehta, D., Garg, M. L., et al. (1994). Journal of Physical and Chemical Reference Data, 23, 339.

    Article  ADS  Google Scholar 

  23. Hughes, J. P., & Helfand, D. J. (1985). The Astrophysical Journal, 291, 544.

    Article  ADS  Google Scholar 

  24. Itoh, H. (1977). Publications of the Astronomical Society of Japan, 29, 813.

    ADS  Google Scholar 

  25. Jackson, J. D. (1998). Classical electrodynamics (Vol. 832, 3rd edn.). London: Wiley.

    Google Scholar 

  26. Jones, F. C. (1968). Physical Review, 167, 1159.

    Article  ADS  Google Scholar 

  27. Kaastra, J. S., & Jansen, F. A. (1993). Astronomy and Astrophysics Supplement Series, 97, 873

    ADS  Google Scholar 

  28. Kaastra, J. S., & Mewe, R. (1993). Astronomy and Astrophysics Supplement Series, 97, 443.

    ADS  Google Scholar 

  29. Kaastra, J. S., Mewe, R., & Nieuwenhuijzen, H. (1996). In K. Yamashita, & T. Watanabe (Eds.), Proceedings of the of the 11th Colloquium on UV and X-ray, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas (p. 411). Tokyo: Universal Academy Press.

    Google Scholar 

  30. Kafexhiu, E., Aharonian, F., Taylor, A. M., & Vila, G. S. (2014). Physical Review D, 90, 123014.

    Article  ADS  Google Scholar 

  31. Kaganovich, I. D., Startsev, E., & Davidson, R. C. (2006). New Journal of Physics, 8, 278.

    Article  ADS  Google Scholar 

  32. Kahn, S. M. (2005). In M. Güdel, & R. Walter (Eds.), Saas-fee advanced course 30: High-energy spectroscopic astrophysics (pp. 3–81).

    Google Scholar 

  33. Kamae, T., Karlsson, N., Mizuno, T., Abe, T., & Koi, T. (2006). The Astrophysical Journal, 647, 692.

    Article  ADS  Google Scholar 

  34. Kassim, N. E., Perley, R. A., Dwarakanath, K. S., & Erickson, W. C. (1995). The Astrophysical Journal, 455, L59.

    Article  ADS  Google Scholar 

  35. Katz, U. F. (2006). Nuclear Instruments and Methods in Physics Research A, 567, 457.

    Article  ADS  Google Scholar 

  36. Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. (2006). Physical Review D, 74, 034018.

    Article  ADS  Google Scholar 

  37. Klein, O., & Nishina, T. (1929). Zeitschrift fur Physik, 52, 853.

    Article  ADS  Google Scholar 

  38. Laming, J. M. (2001). The Astrophysical Journal, 546, 1149.

    Article  ADS  Google Scholar 

  39. Liedahl, D. A. (1999). Lecture notes in physics(Vol. 520, p. 189). Berlin: Springer.

    Google Scholar 

  40. Lotz, W. (1968). Zeitschrift fur Physik, 216, 241.

    Article  ADS  Google Scholar 

  41. Mendoza, C., Kallman, T. R., Bautista, M. A., & Palmeri, P. (2004). Astronomy & Astrophysics, 414, 377.

    Article  ADS  Google Scholar 

  42. Mewe, R. (1999). Lecture notes in physics (Vol. 520, p. 109). Berlin: Springer.

    Google Scholar 

  43. Mewe, R., & Schrijver, J. (1978). Astronomy & Astrophysics, 65, 115.

    ADS  Google Scholar 

  44. Osterbrock, D. E. (1989). Astrophysics of gaseous nebulae and active galactic nuclei. Mill Valley, CA: University Science Books.

    Google Scholar 

  45. Palmeri, P., Mendoza, C., Kallman, T. R., Bautista, M. A., & Meléndez, M. (2003). Astronomy & Astrophysics, 410, 359.

    Article  ADS  Google Scholar 

  46. Porquet, D., Dubau, J., & Grosso, N. (2010). Space Science Reviews, 157, 103.

    Article  ADS  Google Scholar 

  47. Seaton, M. J. (1959). Monthly Notices of the Royal Astronomical Society, 119, 81.

    Article  ADS  MathSciNet  Google Scholar 

  48. Smith, R. K., & Hughes, J. P. (2010). The Astrophysical Journal, 718, 583.

    Article  ADS  Google Scholar 

  49. Stecker, F. W. (1970). Astrophysics and Space Science, 6, 377.

    Article  ADS  Google Scholar 

  50. Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., et al. (2018). Physical Review D, 98, 030001.

    Article  ADS  Google Scholar 

  51. Tanaka, T., Yamaguchi, H., Wik, D. R., Aharonian, F. A., Bamba, A., Castro, D., et al. (2018). The Astrophysical Journal, 866, L26.

    Article  ADS  Google Scholar 

  52. Uchida, H., Katsuda, S., Tsunemi, H., Mori, K., Gu, L., Cumbee, R. S., et al. (2019). The Astrophysical Journal, 871, 234.

    ADS  Google Scholar 

  53. van der Heyden, K. J., Bleeker, J. A. M., Kaastra, J. S., & Vink, J. (2003). Astronomy & Astrophysics, 406, 141.

    Article  ADS  Google Scholar 

  54. Vink, J. (2008). Astronomy & Astrophysics, 486, 837.

    ADS  Google Scholar 

  55. Vink, J. (2012). The Astronomy and Astrophysics Review, 20, 49.

    ADS  Google Scholar 

  56. Vink, J., & Laming, J. M. (2003). The Astrophysical Journal, 584, 758.

    ADS  Google Scholar 

  57. Vink, J., Kaastra, J. S., & Bleeker, J. A. M. (1996). Astronomy & Astrophysics, 307, L41.

    ADS  Google Scholar 

  58. Vink, J., Laming, J. M., Gu, M. F., Rasmussen, A., & Kaastra, J. (2003). ApJ, 587, 31.

    Article  ADS  Google Scholar 

  59. Wiese, W. L., & Fuhr, J. R. (2009). Journal of Physical and Chemical Reference Data, 38, 565.

    Article  ADS  Google Scholar 

  60. Wilms, J., Allen, A., & McCray, R. (2000). The Astrophysical Journal, 542, 914.

    Article  ADS  Google Scholar 

  61. Zeegers, S. T., Costantini, E., Rogantini, D., de Vries, C. P., Mutschke, H., Mohr, P., et al. (2019). Astronomy & Astrophysics, 627, A16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vink, J. (2020). Radiation Processes. In: Physics and Evolution of Supernova Remnants. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-55231-2_13

Download citation

Publish with us

Policies and ethics