Skip to main content

Flying Sensor Network Optimization Using Bee Intelligence for Internet of Things

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1252)

Abstract

Flynig sensor network (FSN) for internet of things (IoT) consist of flying nodes called sensors and ground segments. The flying nodes may be operated manually or it may be automated devices. The flying segment of IoT has different nature compared to ordinary mobile sensor network. The flying speed and diverse directions of nodes make it harder to route the sensor information in a desired way. The data may be collected on the basis of contract opportunities. Here the timely delivery may not be guaranteed. To ensure the desired operation of the FSN, the delivery of data to the base station either deployed in the air or on the ground segment must be ensured in an efficient manner. In this paper, the mating intelligence of bees is used to ensure the delivery of data. The energy consumption is reduced by reducing the amount of control messages and transmitting redundant information. The network lifetime is increased. Simulation is conducted to evaluate the performance of the proposed scheme. The simulation results show that the proposed scheme outperforms existing schemes under consideration.

Keywords

  • Flying sensor networks
  • Bee intelligence
  • IoT
  • FSN
  • UAV
  • Routing
  • WSN
  • Internet of things

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55190-2_25
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55190-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. https://www.i-scoop.eu/internet-of-things-guide/iot-trends-2017/

  2. Sang-JoYoo, J.P., Kim, S., Shrestha, A.: Flying path optimization in UAV-assisted IoT sensor networks. ICT Exp. 2(3), 140–144 (2016)

    CrossRef  Google Scholar 

  3. Ahmad, M., Habib, M., et al.: Energy aware uniform cluster head distribution technique in wireless sensor networks. IJCSNS Int. J. Comput. Sci. Netw. Secur. 10(10), 97–101 (2010)

    Google Scholar 

  4. Ahmad, M., Shafi, I., Ikram, A.A.: Cluster based randomized re-routing for special events in mobile wireless sensor networks. Arch. Des. Sci. 65(7) (2012)

    Google Scholar 

  5. Ahmad, M., Ikram, A.A., Wahid, I., et al.: Honey bee algorithm based clustering in MANETs. Int. J. Distrib. Sensor Netw. 13(6) (2017)

    Google Scholar 

  6. Rosati, S., Kruzelecki, K., Heitz, G., Dario, F., Rimoldi, B.: Dynamic routing for flying ad hoc networks. IEEE Trans. Veh. Technol. 65(3), 1690–1700 (2016)

    CrossRef  Google Scholar 

  7. Qi, W., Kong, X., Guo, L.: A traffic differentiated routing algorithm in FASNet with SDN cluster controller. J. Franklin Inst, December 2017, in press

    Google Scholar 

  8. Mazumdar, N., Om, H.: Distributed fuzzy logic based energy-aware and coverage preserving unequal clustering algorithm for wireless sensor networks. Int. J. Commun Syst 30(13), e3283 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Salam, A., Javaid, Q., Ali, G., Ahmad, F., Ahmad, M., Wahid, I. (2021). Flying Sensor Network Optimization Using Bee Intelligence for Internet of Things. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1252. Springer, Cham. https://doi.org/10.1007/978-3-030-55190-2_25

Download citation