Skip to main content

STAR: Spatio-Temporal Prediction of Air Quality Using a Multimodal Approach

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1251)

Abstract

With the increase of global economic activities and high energy demand, many countries have raised concerns about air pollution. However, air quality prediction is a challenging issue due to the complex interaction of many factors. In this paper, we propose a multimodal approach for spatio-temporal air quality prediction. Our model learns the multimodal fusion of critical factors to predict future air quality levels. Based on the analyses of data, we also assessed the impacts of critical factors on air quality prediction. We conducted experiments on two real-world air pollution datasets. For Seoul dataset, our method achieved 11% and 8.2% improvement of the mean absolute error in long-term predictions of PM2.5 and PM10, respectively, compared to baselines. Our method also reduced the mean absolute error of PM2.5 predictions by 20% compared to the previous state-of-the-art results on China 1-year dataset.

Keywords

  • Air quality prediction
  • Spatio-temporal data mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55187-2_31
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55187-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. 1.

    http://cleanair.seoul.go.kr.

  2. 2.

    Seoul Autonomous Weather System.

References

  1. Bui, T.-C., Le, V.-D., Cha, S.-K.: A deep learning approach for forecasting air pollution in South Korea using LSTM. arXiv preprint. arXiv:1804.07891 (2018)

  2. Cheng, W., Shen, Y., Zhu, Y., Huang, L.: A neural attention model for urban air quality inference: learning the weights of monitoring stations. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  3. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  4. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  5. Kim, Y.P., Lee, G.: Trend of air quality in Seoul: policy and science. Aerosol Air Qual. Res. 18, 2141–2156 (2018)

    CrossRef  Google Scholar 

  6. Kim, Y., Seo, J., Kim, J.Y., Lee, J.Y., Kim, H., Kim, B.M.: Characterization of pm 2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ. Sci. Pollut. Res. 25(5), 4330–4343 (2018)

    CrossRef  Google Scholar 

  7. Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. arXiv preprint. arXiv:1911.12919 (2019)

  8. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint. arXiv:1707.01926 (2017)

  9. Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.Y., Shahabi, C., Ambite, J.L.: Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359–368. ACM (2018)

    Google Scholar 

  10. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep double descent: where bigger models and more data hurt. arXiv preprint. arXiv:1912.02292 (2019)

  11. Arden Pope III, C., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287(9), 1132–1141 (2002)

    Google Scholar 

  12. Qi, Y., Li, Q., Karimian, H., Liu, D.: A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 664, 1–10 (2019)

    CrossRef  Google Scholar 

  13. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint. arXiv:1704.02971 (2017)

  14. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: International Conference on Neural Information Processing, pp. 362–373. Springer (2018)

    Google Scholar 

  15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. WHO: Health risks of particulate matter from long-range transboundary air pollution. Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. WHO Regional Office for Europe, Copenhagen (2016)

    Google Scholar 

  17. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  18. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  19. Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Li, Z.: Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  20. Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 965–973. ACM (2018)

    Google Scholar 

  21. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint. arXiv:1709.04875 (2017)

  22. Zheng, Y., Liu, F., Hsieh, H.-P.: U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1436–1444. ACM (2013)

    Google Scholar 

  23. Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., Li, T.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2267–2276. ACM (2015)

    Google Scholar 

  24. Zhu, J.Y., Sun, C., Li, V.O.: Granger-causality-based air quality estimation with spatio-temporal (ST) heterogeneous big data. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 612–617. IEEE (2015)

    Google Scholar 

  25. Zhu, J.Y., Zheng, Y., Yi, X., Li, V.O.: A Gaussian Bayesian model to identify spatio-temporal causalities for air pollution based on urban big data. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 3–8. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the New Industry Promotion Program (1415158216, Development of Front/Side Camera Sensor for Autonomous Vehicle) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Kyun Cha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bui, TC. et al. (2021). STAR: Spatio-Temporal Prediction of Air Quality Using a Multimodal Approach. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1251. Springer, Cham. https://doi.org/10.1007/978-3-030-55187-2_31

Download citation