Bui, T.-C., Le, V.-D., Cha, S.-K.: A deep learning approach for forecasting air pollution in South Korea using LSTM. arXiv preprint. arXiv:1804.07891 (2018)
Cheng, W., Shen, Y., Zhu, Y., Huang, L.: A neural attention model for urban air quality inference: learning the weights of monitoring stations. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Google Scholar
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)
Google Scholar
Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)
Google Scholar
Kim, Y.P., Lee, G.: Trend of air quality in Seoul: policy and science. Aerosol Air Qual. Res. 18, 2141–2156 (2018)
CrossRef
Google Scholar
Kim, Y., Seo, J., Kim, J.Y., Lee, J.Y., Kim, H., Kim, B.M.: Characterization of pm 2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ. Sci. Pollut. Res. 25(5), 4330–4343 (2018)
CrossRef
Google Scholar
Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. arXiv preprint. arXiv:1911.12919 (2019)
Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint. arXiv:1707.01926 (2017)
Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.Y., Shahabi, C., Ambite, J.L.: Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359–368. ACM (2018)
Google Scholar
Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep double descent: where bigger models and more data hurt. arXiv preprint. arXiv:1912.02292 (2019)
Arden Pope III, C., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287(9), 1132–1141 (2002)
Google Scholar
Qi, Y., Li, Q., Karimian, H., Liu, D.: A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 664, 1–10 (2019)
CrossRef
Google Scholar
Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint. arXiv:1704.02971 (2017)
Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: International Conference on Neural Information Processing, pp. 362–373. Springer (2018)
Google Scholar
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Google Scholar
WHO: Health risks of particulate matter from long-range transboundary air pollution. Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. WHO Regional Office for Europe, Copenhagen (2016)
Google Scholar
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Google Scholar
Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: AAAI Conference on Artificial Intelligence (2019)
Google Scholar
Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Li, Z.: Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Google Scholar
Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 965–973. ACM (2018)
Google Scholar
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint. arXiv:1709.04875 (2017)
Zheng, Y., Liu, F., Hsieh, H.-P.: U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1436–1444. ACM (2013)
Google Scholar
Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., Li, T.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2267–2276. ACM (2015)
Google Scholar
Zhu, J.Y., Sun, C., Li, V.O.: Granger-causality-based air quality estimation with spatio-temporal (ST) heterogeneous big data. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 612–617. IEEE (2015)
Google Scholar
Zhu, J.Y., Zheng, Y., Yi, X., Li, V.O.: A Gaussian Bayesian model to identify spatio-temporal causalities for air pollution based on urban big data. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 3–8. IEEE (2016)
Google Scholar