Skip to main content

Retreating Glacier Dynamics Over the Last Quarter of a Century in Uttarakhand Region Using Optical Sensor Time Series Data

  • Chapter
  • First Online:
Remote Sensing and GIScience

Abstract

The Uttarakhand glaciers have been melting over the last half of a century. Local climatic variation has influenced the glacier retreat but these phenomena do not appear to affect the glacier health over long period of time. The increased availability of geospatial technology, global coverage and very low financial costs allows for fast, semi-automated, and cost-effective assessment of changes in glacier parameters over large areas. Geospatial technology allow for regular monitoring of the properties of Uttarakhand glaciers such as terminus position and ice extent from which glacier mass balance can be inferred. Geospatial technology is the only technique that can help to determine it using different platform like space-borne and air-borne sensors. The basic semantic characterization of geospatial technology is primarily used for spectral characterization in Uttarakhand glacial and depicting snow and ice top. Semi-automated geospatial technique helps in processing all data collected from on-board and off-board systems. This research analyzed the Normalized Difference Snow Index (NDSI) for showing snow cover delineation area and Normalized Difference Vegetation Index (NDVI) for vegetation cover delineation. The study aim to refer the changes from 1994 to 2015 and detected for snow and vegetation changed over quarter of the century. The study will helps to determine glacier dynamics and its kinetic change rate and also useful to global level studies and snow change detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andreassen, L. M., Paul, F., Kääb, A., & Hausberg, J. E. (2008). Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere, 2, 131–145.

    Article  Google Scholar 

  • Andreassen, L., Huss, M., Melvold, K., Elvehøy, H., & Winsvold, S. (2015). Ice thickness measurements and volume estimates for glaciers in Norway. Journal of Glaciology, 61, 763–775.

    Article  Google Scholar 

  • Atif, I., Iqbal, J., & Mahboob, M. A. (2016). Modelling semi-automated delineation of supra-glacial debris and clean ice glacial changes of Shigar basin. Geosciences, 9, 259.

    Google Scholar 

  • Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., & Kargel, J. S. (2018). Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology, 64, 61–74.

    Article  Google Scholar 

  • Bajracharya, S. R., Maharjan, S. B., & Shrestha, F. (2014). The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Annals of Glaciology, 55, 159–166.

    Article  Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108, 327–338.

    Article  Google Scholar 

  • Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., & Rémy, F. (2010). Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geoscience, 3, 92–95.

    Article  Google Scholar 

  • Bhambri, R., & Bolch, T. (2009). Glacier mapping: A review with special reference to the Indian Himalayas. Progress in Physical Geography, 33, 672–704.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high resolution remote sensing data. Current Science, 00113891, 102.

    Google Scholar 

  • Bhutiyani, M. R. (2016). Spatial and temporal variability of climate change in high-altitude regions of NW Himalaya. In R. B. Singh, U. Schickhoff, & S. Mal (Eds.), Climate change, glacier response, and vegetation dynamics in the Himalaya (pp. 87–101). Cham: Springer.

    Google Scholar 

  • Bolch, T., Buchroithner, M. F., Kunert, A., & Kamp, U. (2007, June). Automated delineation of debris-covered glaciers based on ASTER data. In Geoinformation in Europe. Proceedings of the 27th EARSeL Symposium, pp. 4–6.

    Google Scholar 

  • Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., et al. (2019). Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In P. Wester, A. Mishra, A. Mukherji, & A. B. Shrestha (Eds.), The Hindu Kush Himalaya Assessment (pp. 209–255). Cham: Springer.

    Chapter  Google Scholar 

  • Csatho, B., Schenk, T., Lee, D., & Filin, S. (1999). Inclusion of multispectral data into object recognition. International Archives of Photogrammetry and Remote Sensing, 32, 53–61.

    Google Scholar 

  • Dedieu, J-P., Mathieu, J., Besic, N., Durand, Y., & Gottardi, F.. (2013). Dry snow analysis in Alpine regions using RADARSAT-2 full polarimetry data. Comparison with in situ measurements. International Geoscience and Remote Sensing Symposium (IGARSS), 1558.

    Google Scholar 

  • Deota, B. S., Trivedi, Y. N., Kulkarni, A. V., Bahuguna, I. M., & Rathore, B. P. (2011). RS and GIS in mapping of geomorphic records and understanding the local controls of glacial retreat from the Baspa Valley, Himachal Pradesh, India. Current Science, 100, 1555–1563.

    Google Scholar 

  • Dyurgerov, B. M., & Meier, M. F. (1997). Mass balance of mountain and subpolar glaciers: A new global assessment for 1961–1990. Arctic and Alpine Research, 29(4), 379–391.

    Article  Google Scholar 

  • Fallourd, R., Harant, O., Trouvé, E., Nicolas, J.-M., Gay, M., Walpersdorf, A., Mugnier, J.-L., Serafini, J., Rosu, D., Bombrun, L., et al. (2011). Monitoring temperate glacier movement by multi-temporal TerraSAR-X images and continuous GPS measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 372–386.

    Article  Google Scholar 

  • Gao, Y., Mas, J., Niemeyer, I., Marpu, P., & Palacio, J. (2007). Object-based image analysis for mapping land-cover in a forest area.

    Google Scholar 

  • Giesen, R. H., & Oerlemans, J. (2013). Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dynamics, 7, 3283–3300.

    Article  Google Scholar 

  • Hall, D. K., Ormsby, J. P., Bindschadler, R. A., & Siddalingaiah, H. (1987). Characterization of snow and ice reflectance zones on glaciers using Landsat thematic mapper data. Annals of Glaciology, 9, 104–108.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., Barton, J. S., Casey, K. L., Chien, N. E., DiGirolamo, A. G., Klein, H., Powell, W., & Tait, A. B. (2001). Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms. viewed, (3 October 2013).

    Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolanno, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote Sensing qf Environment, 83, 181–194.

    Article  Google Scholar 

  • Haq, M. A., & Jain, K. (2012). Development of New Thermal Ratio Index for Snow/Ice Identification. International Journal of Soft Computing and Engineering (IJSCE), 1, 282.

    Google Scholar 

  • Haritashya, U. K., Singh, P., Kumar, N., & Gupta, R. P. (2006). Suspended sediment from Gangotri glacier: Quantification, variability and associations with discharge and air temperature. Journal of Hydrology, 321, 116–130.

    Article  Google Scholar 

  • Hock, R. (2014). Glaciers and climate change, in global environmental change. New york, ny, usa: springer, 205–210.

    Google Scholar 

  • Huang, L., & Li, Z. (2011). Comparison of SAR and optical data in deriving glacier velocity with feature tracking. International Journal of Remote Sensing, 32, 2681–2698.

    Article  Google Scholar 

  • Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., et al. (2017). Toward mountains without permanent snow and ice: Mountains without permanent snow and ice. Earth’s Future, 5, 418–435.

    Article  Google Scholar 

  • Kääb, A., Treichler, D., Nuth, C., & Berthier, E. (2015). Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere, 9, 557–564.

    Article  Google Scholar 

  • Karimi, N., Farokhnia, A., Karimi, L., Eftekhari, M., & Ghalkhani, H. (2012a). Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology, 71, 73–83.

    Article  Google Scholar 

  • Karimi, N., Farokhnia, A., Shishangosht, S., Elmi, M., Eftekhari, M., & Ghalkhani, H. (2012b). Elevation changes of Alamkouh glacier in Iran since 1955, based on remote sensing data. Int. J. Appl. Earth Obs. Geoinformation, 19, 45–58.

    Article  Google Scholar 

  • Kaser, G., Cogley, G. J., Dyurgerov, B. M., Meier, F., & Ohmura, A. (2006). Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004. Geophysical Research Letters, 33(l), 19501.

    Article  Google Scholar 

  • Khopkar, P., Jawak, S., Jadhav, S., & Luis, A. (2013). Customization of normalized difference snow index for extraction of snow and/or ice cover from cryospheric surface using worldview-2 data.

    Google Scholar 

  • Klein, A. G., & Barnett, A. C. (2003). Validation of daily MODIS snow cover maps of the upper Rio Grande River basin for the 2000–2001 snow year. Remote Sensing of Environment, 86(2), 162–176.

    Article  Google Scholar 

  • Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 106, 237–244.

    Google Scholar 

  • Kumar, K., Dumka, R.K,, Miral, M.S., , Satyal, G.S. and Pant, M. (2008). Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey Current Science, 94, 2.

    Google Scholar 

  • Kumar, K., Miral, M. S., Snehjoshi, N. P., & VarunJoshi, L. M. J. (2009). Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environmental Geology, 58, 1151–1159.

    Article  Google Scholar 

  • Liang, T., Zhang, X., Xie, H., Wu, C., Feng, Q., Huang, X., & Chen, Q. (2008). Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sensing of Environment, 112(10), 3750–3761.

    Article  Google Scholar 

  • Linsbauer, A., Paul, F., & Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journal of Geophysical Research, 117.

    Google Scholar 

  • Lu, S., Oki, K., & Omasa, K. (2005). Mapping snow cover using AVHRR/NDVI 10-day composite data. Journal of Agricultural Meteorology, 60(6), 1215–1218.

    Article  Google Scholar 

  • Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., & Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surveys in Geophysics, 38, 105–130.

    Article  Google Scholar 

  • Nainwal, H. C., Banerjee, A., Shankar, R., Semwal, P., & Sharma, T. (2016). Shrinkage of Satopanth and BhagirathKharak glaciers, India, from 1936 to 2013. Annals of Glaciology, 57, 131–139.

    Article  Google Scholar 

  • Pandey, A. C., Ghosh, S., & Nathawat, M. S. (2011). Evaluating patterns of temporal glacier changes in Greater Himalayan range, Jammu and Kashmir, India. Geocarto International, 26, 321–338.

    Article  Google Scholar 

  • Parajka, J., & Blöschl, G. (2008). Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resources Research, 44(3).

    Google Scholar 

  • Parrot, J. F., et al. (1993). SPOT multispectral data and digital terrainmodel for the analysis of ice-snow fields on Antarctic glaciers.International. Journal of Remote Sensing, 14(3), 425–440.

    Article  Google Scholar 

  • Paul, F., & Kääb, A. (2005). Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffn Island. Annals of Glaciology, 42, 59–66.

    Article  Google Scholar 

  • Paul, F., & Linsbauer, A. (2012). Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM. International Journal of Geographical Information Science, 26, 1173–1190.

    Article  Google Scholar 

  • Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., et al. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63), 171–182.

    Article  Google Scholar 

  • Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., & Armstrong, R. (2009). Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50(53), 53–69.

    Article  Google Scholar 

  • Raina, V. K. (2004). Is the Gangotri glacier receding at an alarming rate? Journal of Geological Society of India, 64, 819–821.

    Google Scholar 

  • Raina, V. K. (2010). MoEF discussion paper: Himalayan glaciers – A state-of-art review of glacial studies, glacial retreat and climate change. Almora: Ministry of Environment and Forests and GB Pant Institute of Himalayan Environment and Development.

    Google Scholar 

  • Raina, K. V., & Srivastava, D. (2008). Glacier atlas of India. Bangalore: Geological Society of India.

    Google Scholar 

  • Raj, G., & Babu, K. (2011). Recession and reconstruction of Milam glacier, Kumaon Himalaya, observed with satellite imagery. Current Science 100(9), (00113891).

    Google Scholar 

  • Rastner, P., Bolch, T., Notarnicola, C., & Paul, F. (2013). A comparison of pixel-and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 853–862.

    Article  Google Scholar 

  • Rastner, P., Bolch, T., Totarnicola, C., & Paul, F. (2014). A comparison of pixel- and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 853–862.

    Article  Google Scholar 

  • Ratan Kar, P.S. Ranhotra, , Bhattacharyya, A. and Sekar, B. (2002): Vegetation vis-à-vis climate and glacial fluctuation of the Gangotri glacier since 2000 years. Current Science, 82, 347–351.

    Google Scholar 

  • Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372–387.

    Article  Google Scholar 

  • Rouse JW, Hass RH, Schell JA, Deering DW (1974) Monitoring vegetation system in the great plains in the ERTS 309-317.

    Google Scholar 

  • Sagredo, E. A., & Lowell, T. V. (2012). Climatology of Andean glaciers: A framework to understand glacier response to climate change. Global and Planetary Change, 86, 101–109.

    Article  Google Scholar 

  • Schickhoff, U., Singh, R. B., & Mal, S. (2016). Climate change and dynamics of glaciers and vegetation in the Himalaya: an overview. In R. B. Singh, U. Schikhoff, & S. Mal (Eds.), Climate change, glacier response, and vegetation dynamics in the Himalaya (pp. 1–26). Cham: Springer.

    Google Scholar 

  • Shukla, A., & Qadir, J. (2016). Differential response of glaciers with varying debris cover extent: Evidence from changing glacier parameters. International Journal of Remote Sensing, 37, 2453–2479.

    Article  Google Scholar 

  • Sibandze, P., Mhangara, P., Odindi, J., & Kganyago, M. (2014). A Comparison of Normalised Difference Snow Index (NDSI) and Normalised Difference Principal Component Snow Index (NDPCSI) techniques in distinguishing snow from related cover types. South African Journal of Geomatics, 3, 197–209.

    Article  Google Scholar 

  • Sidjak, R. W. (1999). Glacier mapping of the Illecillewaet ice field, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273–284.

    Article  Google Scholar 

  • Sidjak, R. W., & Wheate, R. D. (1999). Glacier mapping of the Illecillewaet icefield, British Columbia, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273–284.

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., & Kumar, N. (2008). Modelling and estimation of different components of stream flow for Gangotri glacier basin Himalayas. Hydrological Sciences Journal, 53, 309–322.

    Article  Google Scholar 

  • Smith, T., Bookhagen, B., & Cannon, F. (2015). Improving semi-automated glacier mapping with a multi-method approach: Applications in central Asia. Cryosphere, 9(5), 1747–1759.

    Article  Google Scholar 

  • Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., & Werner, C. L. (2002). Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40, 2384–2391.

    Article  Google Scholar 

  • Tong, J., & Velicogna, I. (2010). A comparison of AMSR-E/aqua snow products with in situ observations and MODIS snow cover products in the Mackenzie River basin, Canada. Remote Sensing, 2, 2313–2322.

    Article  Google Scholar 

  • Venkatesh, T. N., Kulkarni, A. V., & Srinivasan, J. (2013). Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. The Cryosphere, 6, 301–311.

    Article  Google Scholar 

  • Walker, D. A., Halfpenny, J. C., Walker, M. D., & Wessman, C. A. (1993). Long-term studies of snow-vegetation interactions. Bioscience, 43(5), 287–301.

    Article  Google Scholar 

  • Zemp, M., Hoelzle, M., & Haeberli, W. (2009). Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Annals of Glaciology, 50, 101–111.

    Article  Google Scholar 

  • Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., et al. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61, 745–762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, H. et al. (2021). Retreating Glacier Dynamics Over the Last Quarter of a Century in Uttarakhand Region Using Optical Sensor Time Series Data. In: Kumar, P., Sajjad, H., Chaudhary, B.S., Rawat, J.S., Rani, M. (eds) Remote Sensing and GIScience . Springer, Cham. https://doi.org/10.1007/978-3-030-55092-9_5

Download citation

Publish with us

Policies and ethics