Skip to main content

Mapping Rice Growth Stages Employing MODIS NDVI and ALOS AVNIR-2

  • Chapter
  • First Online:

Abstract

Rice, a staple food of most Asian inhabitants, is broadly cultivated and has attracted substantial research interest in the past few decades. Monitoring rice production areas is important due to the growing global demand for the crop. Since cropping systems vary across time and space, frequent monitoring over broad areas is required. This research exploits Moderate Resolution Imaging Spectroradiometer (MODIS) data to identify the stage of rice growth, and Advanced Land Observing Satellite–Advanced Visible and Near Infrared Radiometer Type 2 (ALOS AVNIR-2) to map the stages. Exploiting X12-ARIMA to decompose Normalized Difference Vegetation Index (NDVI) time-series for growth-stage indication and five classifiers for mapping the growth stages, the framework was tested in Indonesia’s “paddy basket,” namely the North Coastal Region of West Java. A conventional classifier, Maximum Likelihood, was compared with some decision tree algorithms, namely Classification Rule with Unbiased Interaction Selection (CRUISE) and Quick, Unbiased, Efficient, Statistical Tree (QUEST); neural network (NN); and support vector machine (SVM) for mapping the growth stages. The seasonal component of time-series decomposition assisted in indicating the stages. Meanwhile, decision tree algorithms produced interpretable rules for rice growth stages while the spatial representation of SVM and NN was closer to the ground truth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Azadi, H., Ho, P., & Hasfiati, L. (2011). Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degradation & Development, 22(6), 596–604. https://doi.org/10.1002/ldr.1037.

    Article  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1968). Some recent advances in forecasting and control. The Royal Statistical Society Series C-Applied Statistics, 17(2), 91–109.

    Google Scholar 

  • Chatfield, C. (1996). The analysis of time series : An introduction (5th ed.). London: Chapman and Hall.

    Google Scholar 

  • Chen, C. F., Chen, C. R., & Son, N. T. (2012a). Investigating rice cropping practices and growing areas from MODIS data using empirical mode decomposition and support vector machines. GIScience & Remote Sensing, 49(1), 117–138. https://doi.org/10.2747/1548-1603.49.1.117.

  • Chen, C. F., Son, N. T., & Chang, L. Y. (2012b). Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data. Advances in Space Research, 49(2), 292–301. https://doi.org/10.1016/j.asr.2011.09.011.

    Article  Google Scholar 

  • Chuvieco, E., & Huete, A. (2010). Fundamentals of satellite remote sensing. Boca Raton: CRC Press.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B.

    Article  Google Scholar 

  • Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user’s guide (MOD13 series), version 3. Arizona: Vegetation Index and Phenology Lab, The University of Arizona.

    Google Scholar 

  • FAO. (2014a). FAO statistical year book: Asia and the Pacific food and agriculture. Bangkok: Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific.

    Google Scholar 

  • FAO. (2014b). A regional strategy for sustainable hybrid rice development in Asia. Bangkok: Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific.

    Google Scholar 

  • FAO. (2015). Global information and early warning system on food and agriculture. In Crop Prospects and Food Situation: Global Information and Early Warning System on Food and Agriculture (GIEWS), Trade and Markets Division (EST), Food and Agriculture Organization of the United Nations. FAO.

    Google Scholar 

  • Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto, and B-C. Chen. 1998. "New capabilities and methods of the X-12-ARIMA seasonal-adjustment program." Journal of Business & Economic Statistics 16 (2):127–152. doi: https://doi.org/10.1080/07350015.1998.10524743.

  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409. https://doi.org/10.1016/S0034-4257(97)00049-7.

    Article  Google Scholar 

  • Gómez, V., & Maravall, A. (1996). Program TRAMO(*) and SEATS(**): Instructions for the user, (Beta version, September 1996). In Banco de Espana - Servicio de Estudios. Gomez and Maravall: Banco de Espana, Madrid.

    Google Scholar 

  • Gómez, V., & Maravall, A. (2001). Automatic modelling methods for univariate series. In Peña, D., Tiao, G. C., & Tsay R.S. (Eds.), A course in time series analysis (pp. 171–201). New York: Wiley.

    Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323.

    Article  Google Scholar 

  • International Rice Research Institute. (2013). How to develop a crop calendar. In Learn about best practices in rice farming. http://www.knowledgebank.irri.org/step-by-step-production/pre-planting/crop-calendar.

  • Jia, G. J., Epstein, H. E., & Walker, D. A. (2002). Spatial characteristics of AVHRR-NDVI along latitudinal transects in northern Alaska. Journal of Vegetation Science, 13(3), 315–326. https://doi.org/10.1111/j.1654-1103.2002.tb02056.x.

    Article  Google Scholar 

  • Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824–1832. https://doi.org/10.1109/Tgrs.2002.802519.

    Article  Google Scholar 

  • Kementerian Pertanian Republik Indonesia. (2015). Basis Data Statistik Pertanian. http://aplikasi.pertanian.go.id/bdsp/newlok.asp

  • Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 1(1), 14–23. https://doi.org/10.1002/Widm.8.

    Article  Google Scholar 

  • Lu, H., Raupach, M. R., McVicar, T. R., & Barrett, D. J. (2003). Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sensing of Environment, 86(1), 1–18. https://doi.org/10.1016/S0034-4257(03)00054-3.

  • Ozdarici-Ok, A., Ok, A. O., & Schindler, K. (2015). Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing. Remote Sensing, 7(5), 5611–5638. https://doi.org/10.3390/rs70505611.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9.

    Article  Google Scholar 

  • Panuju, D. R., & Trisasongko, B. H. (2008). The use of statistical tree methods on rice field mapping. Jurnal Ilmiah Geomatika, 14(2), 75–84.

    Google Scholar 

  • Panuju, D. R., Trisasongko, B. H., Susetyo, B., Raimadoya, M. A., & Lees, B. (2010). Historical fire detection of tropical forest from NDVI time series data: Case study on Jambi, Indonesia. ITB Journal of Science, 42(1), 47–64. https://doi.org/10.5614/itbj.sci.2010.42.1.5.

  • Panuju, D. R., Mizuno, K., & Trisasongko, B. H. (2013). The dynamics of rice production in Indonesia 1961–2009. Journal of the Saudi Society of Agricultural Sciences, 12(1), 27–37. https://doi.org/10.1016/j.jssas.2012.05.002.

  • Pezzulli, S., Stephenson, D. B., & Hannachi, A. (2005). The variability of seasonality. Journal of Climate, 18(1), 71–88. https://doi.org/10.1175/Jcli-3256.1.

    Article  Google Scholar 

  • Phuc, N. Q., van Westen, A. C. M., & Zoomers, A. (2014). Agricultural land for urban development: The process of land conversion in Central Vietnam. Habitat International, 41, 1–7. https://doi.org/10.1016/j.habitatint.2013.06.004.

    Article  Google Scholar 

  • Shiskin, J., Young, A. H., & Musgrave, J. C. (1965). The X-11 variant of the census method II seasonal adjustment program: US Department of Commerce, Bureau of the Census.

    Google Scholar 

  • Tadono, T., Shimada, M., Watanabe, M., Rosenqvist, A., & Furuta, R. (2004). Overview of ALOS research and science program. In Sensors, systems, and next-generation satellites VIII (Vol. 5570, pp. 10–21). International Society for Optics and Photonics.

    Google Scholar 

  • Toan, T. L., Ribbes, F., Wang, L.-F., Floury, N., Ding, K.-H., Kong, J. A., Fujita, M., & Kurosu, T. (1997). Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 41–56. https://doi.org/10.1109/36.551933.

    Article  Google Scholar 

  • Trisasongko, B. H. (2019). Hybrid polarimetric synthetic aperture radar for the detection of waterlogged rice fields Applications and Challenges of Geospatial Technology, 241–255. Springer.

    Google Scholar 

  • Trisasongko, B. H., Panuju, D. R., Tjahjono, B., Barus, B., Wijayanto, H., Raimadoya, M. A., & Irzaman. (2010). Simulasi Pemanfaatan Data LOSAT untuk Pemetaan Padi. Makara Seri Teknologi, 14(2), 116. https://doi.org/10.7454/mst.v14i2.703.

    Article  Google Scholar 

  • Trisasongko, B. H., Panuju, D. R., & Iman, L. S. (2012). Satellite monitoring of small-scale farming systems in Subang, Indonesia. Journal of Mathematical and Fundamental Sciences, 44(1), 67–78. https://doi.org/10.5614/itbj.sci.2012.44.1.6

  • Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. https://doi.org/10.1016/j.rse.2009.08.014.

    Article  Google Scholar 

  • Vergara, B. S. (1992). A farmer’s primer on growing rice. Manila: International Rice Research Institute.

    Google Scholar 

  • Wei, WWS. 2006. Time Series Analysis: Univariate and Multivariate Methods: Addison-Wesley publishing company, Inc.

    Google Scholar 

  • Wu, Z., Thenkabail, P. S., Mueller, R., Zakzeski, A., Melton, F., Johnson, L., Rosevelt, C., Dwyer, J., Jones, J., & Verdin, J. P. (2014). Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm. Journal of Applied Remote Sensing, 8(1). https://doi.org/10.1117/1.JRS.8.083685.

  • Yang, C. C., Prasher, S. O., Enright, P., Madramootoo, C., Burgess, M., Goel, P. K., & Callum, I. (2003). Application of decision tree technology for image classification using remote sensing data. Agricultural Systems, 76(3), 1101–1117. https://doi.org/10.1016/S0308-521X(02)00051-3.

    Article  Google Scholar 

  • Zhao, J., Zhang, D., Wang, D., & Huang, W. (2011). Integrating Landsat TM Imagery and See5 Decision-tree Software for Identifying Croplands: A Case Study in Shunyi District, Beijing. Paper presented at the WISM 2011, Part I, LNCS 6987.

    Google Scholar 

  • Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., Yu, G., He, H., & Zhao, Z. (2013). Plant phenological modeling and its application in global climate change research: Overview and future challenges. Environmental Reviews, 21(1), 1–14. https://doi.org/10.1139/er-2012-0036.

Download references

Acknowledgements

The authors are indebted to the United States Geological Survey (USGS), PT Sang Hyang Seri, the Japan Aerospace Exploration Agency (JAXA) for data access, Australia Awards scholarship, and UNSW Canberra for research facilities. The MOD13Q1 data product was retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, (https://lpdaac.usgs.gov/data_access/data_pool). ALOS AVNIR was provided by JAXA under grant number RA6-3040. Thanks to Julie Kesby (previously with PEMS, UNSW, Canberra) for providing editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dyah R. Panuju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panuju, D.R., Paull, D.J., Griffin, A.L., Trisasongko, B.H. (2021). Mapping Rice Growth Stages Employing MODIS NDVI and ALOS AVNIR-2. In: Kumar, P., Sajjad, H., Chaudhary, B.S., Rawat, J.S., Rani, M. (eds) Remote Sensing and GIScience . Springer, Cham. https://doi.org/10.1007/978-3-030-55092-9_11

Download citation

Publish with us

Policies and ethics