Advertisement

Pathways for a Low-Carbon Electricity System in Poland and Hungary

  • Csaba WeinerEmail author
Chapter
  • 66 Downloads
Part of the Energy, Climate and the Environment book series (ECE)

Abstract

This chapter examines the transition to low-carbon electricity in Poland and Hungary from a security–of–supply point of view. Despite large differences in emphasis, both countries aim to increase electricity generation, decrease import dependence and reduce or eliminate coal-based electricity, while turning to renewables and nuclear energy. In Poland, instead of a coal-dominated electricity mix accompanied by wind, natural gas and biomass, a coal–wind–natural gas–nuclear portfolio may emerge by 2040. In Hungary, the nuclear–natural gas–coal–biomass composition is scheduled to transform into a nuclear–solar–biomass–natural gas focus. While electricity is expected to be predominantly low-carbon in Hungary in 2040, such sources may provide only a bit more than half of the Polish power generation.

Keywords

Low-carbon electricity Security–of–supply Stationary fuels Poland Hungary 

Notes

Acknowledgements

This chapter was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

  1. Adamczewski, T. (2015, November 24). Poland’s Approach to the Paris COP. Heinrich-Böll-Stiftung. https://www.boell.de/en/2015/11/24/background-polands-approach-paris-cop. Accessed 30 May 2020.
  2. Alhajji, A. F. (2007). What Is Energy Security? (4/5). Middle East Economic Survey, 50(52). http://archives.mees.com/issues/206/articles/7943. Accessed 4 June 2020.
  3. APERC. (2007). A Quest for Energy Security in the 21st Century: Resources and Constraints. Asia Pacific Energy Research Centre. http://aperc.ieej.or.jp/file/2010/9/26/APERC_2007_A_Quest_for_Energy_Security.pdf. Accessed 31 May 2020.
  4. Baca-Pogorzelska, K. (2018, April 9). Znów zasypie nas węgiel z Rosji. Padnie rekord importu surowca? Dziennik. http://gospodarka.dziennik.pl/news/artykuly/572265,wegiel-z-rosji-rekord-import-surowiec.html. Accessed 31 May 2020.
  5. Bartek-Lesi, M., Dézsi, B., Diallo, A., Kácsor, E., Kerekes, L., Kotek, P. et al. (2019). A hazai nagykereskedelmi villamosenergia-piac modellezése és ellátásbiztonsági elemzése 2030-ig különböző erőművi forgatókönyvek mellett. Budapest: Regional Centre for Energy Policy Research. https://rekk.hu/downloads/projects/2019_Arampiac_REKK.pdf. Accessed 30 July 2019.
  6. Bolcsó, D. (2019, June 21). A magyar kormány a rezsicsökkentés miatt blokkolta az uniós klímatervet. Index.hu. https://index.hu/techtud/2019/06/21/klimavaltozas_karbonsemlegesseg_europai_unio_2050_blokkolas_rezsi_rezsicsokkentes/. Accessed 21 June 2019.
  7. Büki, G., & Lovas, R. (Eds.). (2010). Megújuló energiák hasznosítása. Budapest: Hungarian Academy of Sciences.Google Scholar
  8. Ciepiela, D. (2017, September 6). Koniec z budową nowych elektrowni węglowych w Polsce. WNP.PL. http://energetyka.wnp.pl/koniec-z-budowa-nowych-elektrowni-weglowych-w-polsce,305594_1_0_0.html. Accessed 1 June 2020.
  9. Deák, A. (2018). Energiabiztonság. Budapest: National University of Public Service.Google Scholar
  10. Dickel, R., El-Katiri, L., Hassanzadeh, E., Henderson, J., Honoré, A., Pirani, S., et al. (2014). Reducing European Dependence on Russian Gas: Distinguishing Natural Gas Security from Geopolitics (OIES Paper, NG 92). Oxford: Oxford Institute for Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/10/NG-92.pdf. Accessed 7 August 2019.
  11. Dinya, L. (2010). Biomassza-alapú energiatermelés és fenntartható energiagazdálkodás. Magyar Tudomány, 171(8), 912–925.Google Scholar
  12. Dinya, L. (2018). Biomassza-alapú energiahasznosítás: a múlt és a jövő. Magyar Tudomány, 179(8), 1184–1196.Google Scholar
  13. EASAC. (2018, June 15). Commentary by the European Academies’ Science Advisory Council (EASAC) on Forest Bioenergy and Carbon Neutrality. https://easac.eu/fileadmin/PDF_s/reports_statements/Carbon_Neutrality/EASAC_commentary_on_Carbon_Neutrality_15_June_2018.pdf. Accessed 1 June 2020.
  14. EC. (2017). State Aid: Commission Clears Investment in Construction of Paks II Nuclear Power Plant in Hungary. https://ec.europa.eu/commission/presscorner/detail/en/IP_17_464. Accessed 5 June 2020.
  15. EEA. (2020). CO2 Intensity of Electricity Generation. European Environment Agency. https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation. Accessed 4 June 2020.
  16. EOP. (2014). The All-Of-the-Above Energy Strategy as a Path to Sustainable Economic Growth. Washington, DC: Executive Office of the President of the United States. https://obamawhitehouse.archives.gov/sites/default/files/docs/aota_energy_strategy_as_a_path_to_sustainable_economic_growth.pdf. Accessed 4 June 2020.
  17. European Parliament and Council. (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX-%3A32009L0028. Accessed 2 June 2020.
  18. European Parliament and Council. (2018). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA relevance). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2001. Accessed 9 December 2019.
  19. Eurostat. (2020a). Production of Electricity and Derived Heat by Type of Fuel. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_bal_peh&lang=en. Accessed 25 February 2020.
  20. Eurostat. (2020b). Share of Energy from Renewable Sources. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ind_ren&lang=en. Accessed 4 March 2020.
  21. Eurostat. (2020c). Supply, Transformation and Consumption of Gas. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_cb_gas&lang=en. Accessed 24 May 2020.
  22. Eurostat. (2020d). Supply, Transformation and Consumption of Electricity. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_cb_e&lang=en. Accessed 25 February 2020.
  23. Friends Against Wind. (2016, March 8). Wind Industry in Poland Has Had 15 Years to Become a Responsible Partner for Rural Communities. Now It Cries Wolf at First Attempt of Proper Regulation. http://en.friends-against-wind.org/doc/SW_eu_Wind_lobby_in_Poland_wasted_15_years_8March2016.pdf. Accessed 1 June 2020.
  24. Greenpeace Hungary. (2018). A Greenpeace Magyarország éghajlatvédelmi javaslatcsomagja. https://www.greenpeace.org/hungary/cikkek/3070/a-greenpeace-magyarorszageghajlatvedelmi-javaslatcsomagja/. Accessed 20 July 2019.
  25. Hajto, M., Cichocki, Z., Bidłasik, M., Borzyszkowski, J., & Kuśmierz, A. (2017). Constraints on Development of Wind Energy in Poland Due to Environmental Objectives. Is There Space in Poland for Wind Farm Siting? Environmental Management, 59(2), 204–217.Google Scholar
  26. Heinrich, A., Kusznir, J., Lis, A., Pleines, H., Smith Stegen, K., & Szulecki, K. (2016). Towards a Common EU Energy Policy? Debates on Energy Security in Poland and Germany. ESPRi. https://www.forschungsstelle.uni-bremen.de/UserFiles/file/ESPRI_Policy_Paper_2_2016.pdf. Accessed 2 June 2020.
  27. Hughes, L. (2012). A Generic Framework for the Description and Analysis of Energy Security in an Energy System. Energy Policy, 42, 221–231.CrossRefGoogle Scholar
  28. HVG.hu. (2017, December 27). Enyhít a napelemekre kivetett sarcon a kormány. http://hvg.hu/gazdasag/20171227_Enyhit_a_napelemekre_kivetett_sarcon_a_kormany. Accessed 31 May 2020.
  29. IEA. (2020a). Energy Security. International Energy Agency. https://www.iea.org/topics/energysecurity/. Accessed 4 May 2020.
  30. IEA. (2020b). Our Mission. International Energy Agency. https://www.iea.org/about/ourmission/. Accessed 4 May 2020.
  31. IEO. (2017). Rynek fotowoltaiki w Polsce. Warsaw: Institute for Renewable Energy. https://www.cire.pl/pliki/2/2017/raportpv_2017_final_18_05_2017.pdf. Accessed 1 June 2020.
  32. IEO. (2019). W 2019 roku Polska może znaleźć się już na 4 miejscu w UE pod względem rocznych przyrostów nowych mocy fotowoltaicznych. Warsaw: Institute for Renewable Energy. https://ieo.pl/pl/projekty/raport-rynek-fotowoltaiki-w-polsce-2019. Accessed 5 March 2020.
  33. Illés, J. (2017, September 27). Akár háromszor annyi turbina is működhetne, de nem engedik az építésüket. Mno.hu. https://mno.hu/gazdasag/akar-haromszor-annyi-turbina-is-mukodhetne-de-nem-engedik-az-epitesuket-2418865. Accessed 1 June 2020.
  34. IRENA. (2019a). Renewable Capacity Statistics 2019. Abu Dhabi: International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/IRENA_RE_Capacity_Statistics_2019.pdf. Accessed 24 May 2020.
  35. IRENA. (2019b). Renewable Power Generation Costs in 2018. Abu Dhabi: International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf. Accessed 24 May 2020.
  36. ITM. (2020a). Magyarország Nemzeti Energia- és Klímaterve – 2–3. melléklet. Budapest: Ministry for Innovation and Technology. https://www.kormany.hu/hu/dok?source=11&type=402#!DocumentBrowse. Accessed 2 February 2020.
  37. ITM. (2020b). Magyarország Nemzeti Energia- és Klímaterve. Budapest: Ministry for Innovation and Technology (ITM). https://www.kormany.hu/hu/dok?source=11&type=402#!DocumentBrowse. Accessed 2 February 2020.
  38. ITM. (2020c). Nemzeti Energiastratégia 2030, kitekintéssel 2040-ig. Budapest: Ministry for Innovation and Technology (ITM). https://www.kormany.hu/hu/dok?source=11&type=402#!DocumentBrowse. Accessed 2 February 2020.
  39. Jewell, J. (2011). The IEA Model of Short-Term Energy Security (MOSES): Primary Energy Sources and Secondary Fuels (IEA Energy Papers, 17). https://ideas.repec.org/p/oec/ieaaaa/2011-17-en.html. Accessed 4 August 2019.
  40. Kamola-Cieślik, M. (2017). The Government’s Policy in the Field of Hard Coal Mining Restructuration as an Element of Poland’s Energy Security. Polish Political Science Yearbook, 46, 247–261.CrossRefGoogle Scholar
  41. Kerényi, A. Ö., & Szeredi, I. (2012). A vízenergia-hasznosítás vizsgálata II. Magyar Energetika, 19(5), 37–41.Google Scholar
  42. Kotek, P., Selei, A., & Takácsné Tóth, B. (2017). The Impact of the Construction of the Nord Stream 2 Gas Pipeline on Gas Prices and Competition. Budapest: Regional Centre for Energy Policy Research. https://rekk.hu/downloads/academic_publications/NordStream2_REKK.pdf. Accessed 25 April 2019.
  43. Larson, A. (2018, February 28). King Coal Is Alive and Kicking in Poland. Power. http://www.powermag.com/king-coal-is-alive-and-kicking-in-poland/. Accessed 30 May 2020.
  44. Lazard (2019, November 7). Levelized Cost of Energy and Levelized Cost of Storage 2019. https://www.lazard.com/perspective/lcoe2019. Accessed 10 April 2020.
  45. Martewicz, M. (2020, February 14). Poland’s Last New Coal Plant Could Be Built As Soon As This Year. Bloomberg. https://www.bloomberg.com/news/articles/2020-02-14/poland-s-last-new-coal-plant-could-be-built-as-soon-as-this-year. Accessed 14 February 2020.
  46. Majewski, J., & Szymanek, M. (2012). Technical, Economic and Legal Conditions of the Development of Photovoltaic Generation in Poland. Acta Energetica, 2(11), 21–26.Google Scholar
  47. Majewski, W. (2013). The Development of Hydro Power in Poland: The Most Important Hydro Engineering Facilities. Acta Energetica, 3(16), 45–53.CrossRefGoogle Scholar
  48. MAP. (2019). Scenariusz Polityki Energetyczno-Plimatycznej. Ocena skutków planowanych polityk i środków. Załącznik 2. do Krajowego planu na rzecz energii i klimatu na lata 2021–2030. Warsaw: Ministry of State Assets. https://www.gov.pl/attachment/a8db078d-535b-4b1b-bfe5-bda64df73778. Accessed 2 March 2020.
  49. Marczisovszky, M. (2020, February 19). Palkovics: 2025-től földgáz alapú lesz a Mátrai Erőmű. Index.hu. https://index.hu/gazdasag/2020/02/19/matrai_eromu_palkovics_bejelentette_foldgaz_alapu/. Accessed 19 February 2020.
  50. Mátrai Erőmű. (2020). Mátrai Erőmű. Cégtörténet. http://www.mert.hu/cegtortenet. Accessed 2 June 2020.
  51. ME. (2010). National Renewable Energy Action Plan. Warsaw: Ministry of Energy. https://ec.europa.eu/energy/sites/ener/files/documents/dir_2009_0028_action_plan_poland.zip. Accessed 2 June 2020.
  52. ME. (2018). Wnioski z analiz prognostycznych dla sektora energetycznego—załącznik nr 1 do Polityki energetycznej Polski do 2040 roku (PEP2040). Warsaw: Ministry of Energy. https://www.gov.pl/documents/33372/436746/Wnioski_z_analiz_do_PEP2040_2018-11-23.pdf/1481a6a9-b87f-a545-4ad8-e1ab467175cf. Accessed 29 January 2019.
  53. MEKH. (2019). 1,1 GW összteljesítményt értek el a napelemek 2019 közepére. Hungarian Energy and Public Utility Regulatory Authority. http://www.mekh.hu/1-1-gw-osszteljesitmenyt-ertek-el-a-napelemek-2019-kozepere. Accessed 11 February 2020.
  54. MEKH–Mavir. (2019). Data of the Hungarian Electricity System. Budapest: MEKH–Mavir. https://www.mavir.hu/documents/10258/154394509/MEKH_MAVIR+-+VER+kiadv%C3%A1ny+2018+-+web.pdf/cd611b23-9f7c-3e9b-da49-17d4916df10b. Accessed 10 April 2020.
  55. MSZIT. (2011). A szélenergia támogatásáról, és a fogyasztói árakra gyakorolt hatásáról. Hungarian Wind Energy Industry Association. http://www.mszit.hu/hirek/hirek/article/a-szelenergia-tamogatasarol-es-a-fogyasztoi-arakra-gyakorolt-hatasarol/. Accessed 30 May 2020.
  56. Munkácsy, B. (2015). Háttérinformációk és szempontok a szélerőművekkel kapcsolatos szabályozás tárgykörében. Budapest: ELTE University. http://munkacsy.web.elte.hu/szelenergia-hatter.pdf. Accessed 15 November 2018.
  57. Munkácsy, B., Sáfián, F., Harmat, A., & Németh, S. (2014). Hazai megújuló potenciálok és hasznosításuk jövőképünkben. In B. Munkácsy (Ed.), A fenntartható energiagazdálkodás felé vezető út (pp. 143–152). Budapest: ELTE University.Google Scholar
  58. Nagy, G. M. (2016, September 1). Csak ne a szél! Miért sorvasztja el a kormány a szélerőműveket? Magyar Narancs. https://magyarnarancs.hu/belpol/csak-ne-a-szel-100654. Accessed 30 May 2020.
  59. Német, T. (2016, October 8). Csepreghy: a szélenergiának nincs helye a magyar energiarendszerben. Index.hu. http://index.hu/belfold/2016/10/08/csepreghy_a_szelenergianak_nincs_helye_a_magyar_energiarendszerben/. Accessed 30 May 2020.
  60. NFM. (2010). National Renewable Energy Action Plan 2010–2020. Budapest: The Deputy Secretariat of State for Green Economy Development and Climate Policy for the Ministry of National Development. http://2010-2014.kormany.hu/download/6/b9/30000/RENEWABLE%20ENERGY_REPUBLIC%20OF%20HUNGARY%20NATIONAL%20RENEWABLE%20ENERGY%20ACTION%20PLAN%202010_2020.pdf. Accessed 10 November 2018.
  61. OAH. (2011). Nemzeti jelentés. Negyedik jelentés, készült a kiégett fűtőelemek kezelésének biztonságáról és a radioaktív hulladékok kezelésének biztonságáról szóló közös egyezmény keretében. Budapest: Hungarian Atomic Energy Authority (OAH). https://www.haea.gov.hu/web/v3/OAHPortal.nsf/40A6C15B41C95EFAC1257BEB00306F10/$FILE/nemzjel4.pdf. Accessed 11 June 2019.
  62. Official Journal of the European Union. (2012). Consolidated Versions of the Treaty on European Union and the Treaty on the Functioning of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012E/TXT&from=HU. Accessed 6 May 2020.
  63. Paks II. (2020). Background of the Project. https://www.paks2.hu/en/web/paks-2-en/background-of-the-project. Accessed 6 June 2020.
  64. PSEW. (2016). The State of Wind Energy in Poland in 2015. Warsaw: The Polish Wind Energy Association. http://pliki.psew.pl/Marcin/Stan_energetyki_wiatrowej_w_Polsce_ENG.pdf. Accessed 2 April 2018.
  65. PSG. (2017a). Import i eksport węgla kamiennego w Polsce. Polish Geological Institute. https://www.pgi.gov.pl/dokumenty-pig-pib-all/foldery-instytutowe/foldery-surowcowe-2018/6214-folder-wegiel-kamienny-1/file.html. Accessed 7 May 2018.
  66. PSG. (2017b). Wydobycie węgla kamiennego w Polsce. Polish Geological Institute. https://infolupki.pgi.gov.pl/sites/default/files/czytelnia_pliki/1/georaport_wegiel_kamienny_2_1.pdf. Accessed 7 May 2018.
  67. Schlandt, J. (2015, December 29). Loops and Cracks: Excess German Power Strains Europe’s grids. Clean Energy Wire. https://www.cleanenergywire.org/news/loops-and-cracks-excess-german-power-strains-europes-grids-0. Accessed 2 June 2020.
  68. Schwartzkopff, J., & Schulz, S. (2017). Climate & Energy Snapshot: Poland. The Political Economy of the Low-Carbon Transition. https://www.e3g.org/docs/Climate_energy_snaphot_PL.pdf. Accessed 2 June 2020.
  69. ŚCITT. (2020). Potencjał hydroenergetyczny i jego wykorzystanie. Regional Centre for Innovation and Technology Transfer. http://portalrsi.it.kielce.pl/pl/top/potencjal_hydroenergetyczny_i_je?. Accessed 12 March 2020.
  70. Smil, V. (2010). Energy Transitions: History, Requirements, Prospects. Santa Barbara, CA: Praeger.Google Scholar
  71. Smil, V. (2016). Examining Energy Transitions: A Dozen Insights Based on Performance. Energy Research and Social Science, 22, 194–197.CrossRefGoogle Scholar
  72. Statista. (2020). Total Installed Wind Power Capacity in Poland from 2008 to 2019. https://www.statista.com/statistics/421509/total-wind-power-in-poland/. Accessed 13 May 2020.
  73. Steller, J. (2012). Hydropower Sector in Poland: Current Status and Outlook. Hidroenergia 2012. http://www.tew.pl/projekty/shpstreammap/HE_2012_0_01_steller_Hydropower_sector_in_Poland_1.pdf. Accessed 2 June 2020.
  74. Steller, J. (2019). Hydropower in Poland: Looking Forward for a New Stimulus. Nordic Workshop: Lulea University of Technology. http://www.tew.pl/biblioteka/prezentacje/2019_Steller_Hydropower_in_Poland_Hydropower_Europe_Lulea_2019_wide.pdf. Accessed 12 March 2020.
  75. Szabó, D. (2017, May 21). Elbukik a nagy terv. Magyarországra nem süt már a Nap. Napi.hu. https://www.napi.hu/magyar_vallalatok/elbukik_a_nagy_terv_magyarorszagra_nem_sut_mar_a_nap.638095.html. Accessed 18 November 2018.
  76. Szalai, S., Gács, I., Tar, K., & Tóth, P. (2010). A szélenergia helyzete Magyarországon. Magyar Tudomány, 171(8), 847–958.Google Scholar
  77. Szczepiński, J. (2016). Aktualna sytuacja branży górnictwa węgla brunatnego w Polsce. Warsaw: Posiedzenie Parlamentarnego Zespołu Górnictwa i Energii. http://orka.sejm.gov.pl/opinie8.nsf/nazwa/390_20161103_2/$file/390_20161103_2.pdf. Accessed 19 March 2018.
  78. Szeredi, I., Alföldi, L., Csom, G., & Mészáros, C. (2010). A vízenergia-hasznosítás szerepe, helyzete, hatásai. Magyar Tudomány, 171(8), 959–978.Google Scholar
  79. Szulecki, K., Ancygier, A., & Szwed, D. (2015). Energy Democratization? Societal Aspects of De-carbonization in the German and Polish Energy Sectors. ESPRi. http://ssrn.com/abstract=2575695. Accessed 2 August 2018.
  80. Tóth, L., & Schrempf, N. (2013). Szélerőművek szerepe “A megújuló energia hasznosítása” Nemzeti Cselekvési Tervben. Mezőgazdasági Technika. http://technika.gmgi.hu/uploads/termek_341/szeleromuvek_szerepe_a_nemzeti_cselekvesi_tervben_13_08.pdf. Accessed 2 June 2020.
  81. Tóth, P., Bulla, M., & Nagy, G. (2011). Energetika. https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0021_Energetika/ch04s03.html. Accessed 4 June 2020.
  82. Union of Concerned Scientists. (2013a, March 5). Environmental Impacts of Hydroelectric Power. https://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-hydroelectric-power.html. Accessed 2 June 2020.
  83. Union of Concerned Scientists. (2013b, March 5). Environmental Impacts of Solar Power. https://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-solar-power.html. Accessed 2 June 2020.
  84. Von Hippel, D., Suzuki, T., Williams, J. H., Savage, T., & Hayes, P. (2011). Energy Security and Sustainability in Northeast Asia. Energy Policy, 39, 6719–6730.CrossRefGoogle Scholar
  85. Widera, M., Kasztelewicz, Z., & Ptak, M. (2016). Lignite Mining and Electricity Generation in Poland: The Current State and Future Prospects. Energy Policy, 92, 151–157.CrossRefGoogle Scholar
  86. Wierzbowski, M., Filipiak, I., & Lyzwa, W. (2017). Polish Energy Policy 2050: An Instrument to Develop a Diversified and Sustainable Electricity Generation Mix in Coal-Based Energy System. Renewable and Sustainable Energy Reviews, 74, 51–70.CrossRefGoogle Scholar
  87. WindEurope. (2018, April 11). Ambitious 8 GW of Offshore Wind Planned That Will Put Poland Back on Wind Energy Map. https://windeurope.org/newsroom/press-releases/ambitious-8gw-of-offshore-wind-planned-that-will-put-poland-back-on-wind-energy-map/. Accessed 1 August 2018.
  88. WindEurope (2019, July 23). Revised Renewables Act Paves Way for 2.5 GW Onshore Wind Auction in Poland. https://windeurope.org/newsroom/news/revised-renewables-act-paves-way-for-2-5-gw-onshore-wind-auction-in-poland/. Accessed 17 April 2020.
  89. Wood, I., Danahy, J., & Broom, R. (2017, June 15). Poland’s Nuclear Plans Regain Some Momentum. https://www.squirepattonboggs.com/~/media/files/insights/publications/2017/06/polands-nuclear-plans-regain-some-momentum/polandsnuclearplansregainsomemomentum.pdf. Accessed 31 May 2020.

Copyright information

© The Author(s) 2021

Authors and Affiliations

  1. 1.Institute of World Economics, Centre for Economic and Regional StudiesBudapestHungary

Personalised recommendations