Skip to main content

Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer’s Disease

Part of the Advances in Experimental Medicine and Biology book series (PMISB,volume 1286)

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.

Keywords

  • Alzheimer’s disease
  • Nanotherapeutic
  • Molecular targets
  • Oxidative stress
  • CNS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55035-6_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55035-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2

References

  1. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    CAS  PubMed  CrossRef  Google Scholar 

  3. Jakob-Roetne R, Jacobsen H (2009) Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 48:3030–3059

    CAS  PubMed  CrossRef  Google Scholar 

  4. Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG (2020) Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res. https://doi.org/10.1007/s11064-020-03031-0. [Epub ahead of print]

  5. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV (2020) Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci 21(9):E3165. https://doi.org/10.3390/ijms21093165

    CAS  CrossRef  PubMed  Google Scholar 

  6. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    CAS  PubMed  CrossRef  Google Scholar 

  7. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. https://doi.org/10.1186/1750-1326-9-48

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al (2003) APP processing and synaptic function. Neuron 37:925–937

    CAS  PubMed  CrossRef  Google Scholar 

  10. Nguyen TT, Giau VV, Vo TK (2017) Current advances in transdermal delivery of drugs for Alzheimer’s disease. Indian J Pharmacol 49:145–154

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker RE, Greig NH, Giacobini E (2008) Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices? J Alzheimers Dis 15:303–325

    PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Parveen S, Sahoo SK (2006) Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin Pharmacokinet 45:965–988

    CAS  PubMed  CrossRef  Google Scholar 

  13. Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S et al (2010) Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials 31:6519–6529

    CAS  PubMed  CrossRef  Google Scholar 

  14. Ordonez-Gutierrez L, Re F, Bereczki E, Ioja E, Gregori M, Andersen AJ et al (2015) Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-beta levels in APP/PS1 transgenic mice. Nanomedicine 11:421–430

    CAS  PubMed  CrossRef  Google Scholar 

  15. Huo X, Zhang Y, Jin X, Li Y (2010) A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of Amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 190:98–102

    CrossRef  CAS  Google Scholar 

  16. Srivastava AK, Roy Choudhury S, Karmakar S (2020) Near-infrared responsive dopamine/melatonin-derived nanocomposites abrogating in situ Amyloid β nucleation, propagation, and ameliorate neuronal functions. ACS Appl Mater Interfaces 12(5):5658–5670

    CAS  PubMed  CrossRef  Google Scholar 

  17. Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25:307–320

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Poduslo JF, Hultman KL, Curran GL, Preboske GM, Chamberlain R, Marjańska M et al (2011) Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid beta protein antibody-coated nanoparticles. J Neuropathol Exp Neurol 70:653–661

    CAS  PubMed  CrossRef  Google Scholar 

  19. Pardridge WM (2015) Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv 12:207–222

    CAS  PubMed  CrossRef  Google Scholar 

  20. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Javed I, He J, Kakinen A, Faridi A, Yang W, Davis TP et al (2019) Probing the aggregation and immune response of human islet amyloid polypeptides with ligand-stabilized gold nanoparticles. ACS Appl Mater Interfaces 11:10462–10471

    CAS  PubMed  CrossRef  Google Scholar 

  22. Gladytz A, Abel B, Risselada HJ (2016) Gold-induced fibril growth: the mechanism of surface-facilitated amyloid aggregation. Angew Chem Int Ed Engl 55:11242–11246

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Wang S-T, Lin Y, Todorova N, Xu Y, Mazo M, Rana S et al (2017) Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: implications for fibril formation and peptide-induced lipid membrane disruption. Chem Mater 29:1550–1560

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Dawson KA, Linse S (2010) Dual effect of amino modified polystyrene nanoparticles on Amyloid β protein fibrillation. ACS Chem Neurosci 1:279–287

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Palmal S, Maity AR, Singh BK, Basu S, Jana NR, Jana NR (2017) Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 20:6184–6191

    CrossRef  CAS  Google Scholar 

  26. Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE et al (2011) Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew Chem Int Ed Engl 50:5110–5115

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Luo J, Warmlander SK, Yu CH, Muhammad K, Graslund A, Pieter Abrahams J (2014) The Abeta peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale 6:6720–6726

    CAS  PubMed  CrossRef  Google Scholar 

  28. Wang M, Sun Y, Cao X, Peng G, Javed I, Kakinen A et al (2018) Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale 10:19995–20006

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Pederzoli F, Ruozi B, Duskey J, Hagmeyer S, Sauer AK, Grabrucker S et al (2019) Nanomedicine against Aβ aggregation by β-sheet breaker peptide delivery: in vitro evidence. Pharmaceutics 11(11):572. https://doi.org/10.3390/pharmaceutics11110572

    CAS  CrossRef  PubMed Central  Google Scholar 

  30. Song Q, Huang M, Yao L, Wang X, Gu X, Chen J et al (2014) Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8:2345–2359

    CAS  PubMed  CrossRef  Google Scholar 

  31. Reardon S (2018) Frustrated Alzheimer’s researchers seek better lab mice. Nature 563:611–612

    CAS  PubMed  CrossRef  Google Scholar 

  32. Xu P, Gullotti E, Tong L, Highley CB, Errabelli DR, Hasan T et al (2009) Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 6:190–201

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Nazem A, Mansoori GA (2008) Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 13:199–223

    CAS  PubMed  CrossRef  Google Scholar 

  34. Modi G, Pillay V, Choonara YE (2010) Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 1184:154–172

    CAS  PubMed  CrossRef  Google Scholar 

  35. Pike CJ, Carroll JC, Rosario ER, Barron AM (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30:239–258

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Amtul Z, Wang L, Westaway D, Rozmahel RF (2010) Neuroprotective mechanism conferred by 17β-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience 169:781–786

    CAS  PubMed  CrossRef  Google Scholar 

  37. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Rel 119:77–85

    CAS  CrossRef  Google Scholar 

  38. Mittal G, Carswell H, Brett R, Currie S, Kumar MN (2011) Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Rel 150:220–228

    CAS  CrossRef  Google Scholar 

  39. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ et al (2001) beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    CAS  PubMed  CrossRef  Google Scholar 

  40. He W, Horn SW, Hussain MD (2007) Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 334:173–178

    CAS  PubMed  CrossRef  Google Scholar 

  41. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962

    CAS  PubMed  CrossRef  Google Scholar 

  43. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Zaman M, Ahmad E, Qadeer A, Rabbani G, Khan RH (2014) Nanoparticles in relation to peptide and protein aggregation. Int J Nanomed 9:899–912

    Google Scholar 

  45. Misra A, Ganesh S, Shahiwala A, Shah SP (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–273

    CAS  PubMed  Google Scholar 

  46. Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S (2008) Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13:1035–1065

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  47. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553

    PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Balducci C, Mancini S, Minniti S, La Vitola P, Zotti M, Sancini G et al (2014) Multifunctional liposomes reduce brain beta-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci 34:14022–14031

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  49. Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X et al (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 32:3837–3849

    CAS  PubMed  CrossRef  Google Scholar 

  50. Tanifum EA, Dasgupta I, Srivastava M, Bhavane RC, Sun L, Berridge J et al (2012) Intravenous delivery of targeted liposomes to Amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS One 7(10):e48515. https://doi.org/10.1371/journal.pone.0048515

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Wilson B, Samanta MK, Santhi K, Sampath Kumar KP, Ramasamy M, Suresh B (2009) Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating Alzheimer’s disease. J Neurosci Methods 177:427–443

    CAS  PubMed  CrossRef  Google Scholar 

  52. Bhattacharya S, Haertel C, Maelicke A, Montag D (2014) Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer’s disease. PLoS One 9(2):e89454. https://doi.org/10.1371/journal.pone.0089454

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–3556

    CAS  PubMed  CrossRef  Google Scholar 

  54. Liu Y, An S, Li J, Kuang Y, He X, Guo Y et al (2016) Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 80:33–45

    CAS  PubMed  CrossRef  Google Scholar 

  55. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Gao Y, Chen L, Zhang Z, Chen Y, Li Y (2011) Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials 32:1738–1747

    CAS  PubMed  CrossRef  Google Scholar 

  57. Wang C, Wang J, Liu D, Wang Z (2010) Gold nanoparticle-based colorimetric sensor for studying the interactions of beta-amyloid peptide with metallic ions. Talanta 80:1626–1631

    CAS  PubMed  CrossRef  Google Scholar 

  58. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K et al (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10:2860–2870

    CAS  PubMed  CrossRef  Google Scholar 

  59. Han X, Jing Z, Wu W, Zou B, Peng Z, Ren P et al (2017) Biocompatible and blood-brain barrier permeable carbon dots for inhibition of Abeta fibrillation and toxicity, and BACE1 activity. Nanoscale 9:12862–12866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Li H, Luo Y, Derreumaux P, Wei G (2011) Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s Amyloid-β(16-22) peptide. Biophys J 101:2267–2276

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Rao EV, Sudheer P (2011) Revisiting curcumin chemistry. Part I: A new strategy for the synthesis of curcuminoids. Indian J Pharm Sci 73:262–270

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–334

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  63. Zhao L, Wu C, Lin K, Chang J (2012) The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds. Biomed Mater Eng 22:289–300

    CAS  PubMed  Google Scholar 

  64. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109:16288–16293

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano 8:76–103

    CAS  PubMed  CrossRef  Google Scholar 

  66. Aalinkeel R, Kutscher HL, Singh A, Cwiklinski K, Khechen N, Schwartz SA et al (2018) Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? J Drug Target 26:182–193

    CAS  PubMed  CrossRef  Google Scholar 

  67. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY et al (2018) A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 9(1):1802. https://doi.org/10.1038/s41467-018-04255-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. de Boer AG, van der Sandt IC, Gaillard PJ (2003) The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    PubMed  CrossRef  CAS  Google Scholar 

  69. Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL (2017) SR-BI mediated transcytosis of HDL in brain microvascular endothelial cells is independent of Caveolin, Clathrin, and PDZK1. Front Physiol 8:841. https://doi.org/10.3389/fphys.2017.00841

    CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Choi HJ, Seo EH, Yi D, Sohn BK, Choe YM, Byun MS et al (2016) Amyloid-independent amnestic mild cognitive impairment and serum Apolipoprotein A1 levels. Am J Geriatr Psychiatry 24:144–153l

    PubMed  CrossRef  Google Scholar 

  71. Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J et al (2016) Reconstituted high-density lipoproteins acutely reduce soluble brain Abeta levels in symptomatic APP/PS1 mice. Biochim Biophys Acta 1862:1027–1036

    CAS  PubMed  CrossRef  Google Scholar 

  72. Grillone A, Riva ER, Mondini A, Forte C, Calucci L, Innocenti C et al (2015) Active targeting of sorafenib: preparation, characterization, and in vitro testing of drug-loaded magnetic solid lipid nanoparticles. Adv Healthc Mater 4:1681–1690

    CAS  PubMed  CrossRef  Google Scholar 

  73. Xiang SD, Wilson K, Day S, Fuchsberger M, Plebanski M (2013) Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods 60:232–241

    CAS  PubMed  CrossRef  Google Scholar 

  74. Vedagiri A, Thangarajan S (2016) Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides 58:111–125

    CAS  PubMed  CrossRef  Google Scholar 

  75. Zhang E, Zhang C, Su Y, Cheng T, Shi C (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140–146

    CAS  PubMed  CrossRef  Google Scholar 

  76. Picone P, Bondi ML, Montana G, Bruno A, Pitarresi G, Giammona G et al (2009) Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res 43:1133–1145

    CAS  PubMed  CrossRef  Google Scholar 

  77. Wolfe MS (2002) Therapeutic strategies for Alzheimer’s disease. Nat Rev Drug Discov 1:859–866

    CAS  PubMed  CrossRef  Google Scholar 

  78. Reznickova A, Novotna Z, Kvitek O, Kolska Z, Svorcik V (2015) Gold, silver and carbon nanoparticles grafted on activated polymers for biomedical applications. J Nanosci Nanotechnol 15:10053–10073

    CAS  PubMed  CrossRef  Google Scholar 

  79. Laurent S, Ejtehadi MR, Rezaei M, Kehoe PG, Mahmoudi M (2012) Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer’s disease. RSC Adv 2:5008–5033

    CAS  CrossRef  Google Scholar 

  80. Choi I, Lee LP (2013) Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS Nano 7:6268–6277

    CAS  PubMed  CrossRef  Google Scholar 

  81. Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA et al (2013) Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid beta protein fibrillation in solution. ACS Chem Neurosci 4:475–485

    CAS  PubMed  CrossRef  Google Scholar 

  82. Mahmoudi M, Akhavan O, Ghavami M, Rezaee F, Ghiasi SM (2012) Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 4:7322–7325

    CAS  PubMed  CrossRef  Google Scholar 

  83. He X-P, Deng Q, Cai L, Wang CZ, Zang Y, Li J et al (2014) Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer’s disease. ACS Appl Mater Interfaces 6:5379–5382

    CAS  PubMed  CrossRef  Google Scholar 

  84. Bin Y, Li X, He Y, Chen S, Xiang J (2013) Amyloid-beta peptide (1-42) aggregation induced by copper ions under acidic conditions. Acta Biochim Biophys Sin Shanghai 45:570–577

    CAS  PubMed  CrossRef  Google Scholar 

  85. Li M, Zhao C, Duan T, Ren J, Qu X (2014) New insights into Alzheimer’s disease amyloid inhibition: nanosized metallo-supramolecular complexes suppress aβ-induced biosynthesis of heme and iron uptake in PC12 cells. Adv Healthc Mater 3:832–836

    CAS  PubMed  CrossRef  Google Scholar 

  86. Fanizza E, Iacobazzi RM, Laquintana V, Valente G, Caliandro G, Striccoli M et al (2016) Highly selective luminescent nanostructures for mitochondrial imaging and targeting. Nanoscale 8:3350–3361

    CAS  PubMed  CrossRef  Google Scholar 

  87. Thakur G, Micic M, Yang Y, Li W, Movia D, Giordani S et al (2011) conjugated quantum dots inhibit the Amyloid β (1–42) fibrillation process. Int J Alzheimers Dis 2011:502386. https://doi.org/10.4061/2011/502386

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  88. Han Q, Cai S, Yang L, Wang X, Qi C, Yang R et al (2017) Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater Interfaces 9:21116–21123

    CAS  PubMed  CrossRef  Google Scholar 

  89. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432

    CAS  PubMed  CrossRef  Google Scholar 

  90. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    CAS  PubMed  CrossRef  Google Scholar 

  91. Jeon YM, Park SK, Lee MY (2011) Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Anim Cells Syst 15:107–114

    CAS  CrossRef  Google Scholar 

  92. Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG (2014) Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183

    CAS  PubMed  CrossRef  Google Scholar 

  93. Gregori M, Taylor M, Salvati E, Re F, Mancini S, Balducci C et al (2017) Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer’s Abeta peptide. Nanomedicine 13:723–732

    CAS  PubMed  CrossRef  Google Scholar 

  94. Hu B, Dai F, Fan Z, Ma G, Tang Q, Zhang X (2015) Nanotheranostics: Congo Red/Rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv Mater 27:5499–5505

    CAS  PubMed  CrossRef  Google Scholar 

  95. Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S et al (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 29:13761–13769

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  96. Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R et al (2015) Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 35:469–475

    CAS  PubMed  CrossRef  Google Scholar 

  97. Liu X, Ye M, An C, Pan L, Ji L (2013) The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials 34:6893–6905

    CAS  PubMed  CrossRef  Google Scholar 

  98. Liu X, An C, Jin P, Liu X, Wang L (2013) Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials 34:817–830

    CAS  PubMed  CrossRef  Google Scholar 

  99. Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B et al (2014) Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 9:1054–1062

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  100. Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G et al (2013) B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 24:997–1007

    CAS  PubMed  CrossRef  Google Scholar 

  101. Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS et al (2009) Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 17:564–574

    CAS  PubMed  CrossRef  Google Scholar 

  102. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL (2010) Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31:908–915

    CAS  PubMed  CrossRef  Google Scholar 

  103. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:35–47

    CAS  PubMed  CrossRef  Google Scholar 

  104. Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-beta fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8:3631–3639

    CAS  PubMed  CrossRef  Google Scholar 

  105. Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2017) Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133:88–96

    CAS  PubMed  CrossRef  Google Scholar 

  106. Cardoso SM, Santana I, Swerdlow RH, Oliveira CR (2004) Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J Neurochem 89:1417–1426

    CAS  PubMed  CrossRef  Google Scholar 

  107. Eckert A, Hauptmann S, Scherping I, Rhein V, Müller-Spahn F, Götz J et al (2008) Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5:157–159

    CAS  PubMed  CrossRef  Google Scholar 

  108. Rhein V, Baysang G, Rao S, Meier F, Bonert A, Müller-Spahn F et al (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29:1063–1071

    CAS  PubMed  CrossRef  Google Scholar 

  109. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M et al (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30:1574–1586

    CAS  PubMed  CrossRef  Google Scholar 

  110. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, ShiDu Yan S (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 107:18670–18675

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N et al (2004) ABAD directly links Aß to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    CAS  PubMed  CrossRef  Google Scholar 

  112. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW et al (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    CAS  PubMed  CrossRef  Google Scholar 

  113. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105:13145–13150

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  114. Kovacic P, Somanathan R (2010) Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. J Nanosci Nanotechnol 10:7919–7930

    CAS  PubMed  CrossRef  Google Scholar 

  115. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  116. Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S et al (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592

    CAS  PubMed  CrossRef  Google Scholar 

  117. Van Giau V, An SSA, Hulme JP (2018) Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neurol Sci 395:62–70

    PubMed  CrossRef  CAS  Google Scholar 

  118. Choi H, Park HH, Koh SH, Choi NY, Yu HJ, Park J et al (2012) Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology 33:85–90

    CAS  PubMed  CrossRef  Google Scholar 

  119. Young AJ, Johnson S, Steffens DC, Doraiswamy PM (2007) Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr 12:62–68

    PubMed  CrossRef  Google Scholar 

  120. Horvath R, Schneiderat P, Schoser BG, Gempel K, Neuen-Jacob E, Plöger H et al (2006) Coenzyme Q10 deficiency and isolated myopathy. Neurology 66:253–255

    CAS  PubMed  CrossRef  Google Scholar 

  121. Weyer G, Babej-Dolle RM, Hadler D, Hofmann S, Herrmann WM (1997) A controlled study of 2 doses of idebenone in the treatment of Alzheimer’s disease. Neuropsychobiology 36:73–82

    CAS  PubMed  CrossRef  Google Scholar 

  122. Yamada Y, Nakamura K, Abe J, Hyodo M, Haga S, Ozaki M et al (2015) Mitochondrial delivery of Coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J Control Release 213:86–95

    CAS  PubMed  CrossRef  Google Scholar 

  123. Yaffe K, Clemons TE, McBee WL, Lindblad AS (2004) Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology 63(9):1705–1707

    CAS  PubMed  CrossRef  Google Scholar 

  124. Kang JH, Cook N, Manson J, Je B, Grodstein F (2006) A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med 166:2462–2468

    CAS  PubMed  CrossRef  Google Scholar 

  125. Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK et al (2017) Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol 74:567–573

    PubMed  PubMed Central  CrossRef  Google Scholar 

  126. Hager K, Kenklies M, McAfoose J, Engel J, Munch G (2007) Alpha-lipoic acid as a new treatment option for Alzheimer’s disease—a 48 months follow-up analysis. J Neural Transm Suppl:189–193

    Google Scholar 

  127. Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S et al (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis 38:111–120

    CAS  PubMed  CrossRef  Google Scholar 

  128. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA): Bioenergetics 1777:1028–1031

    CAS  CrossRef  Google Scholar 

  129. Trnka J, Blaikie FH, Smith RAJ, Murphy MP (2008) A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med 44:1406–1419

    CAS  PubMed  CrossRef  Google Scholar 

  130. Huang LK, Chao SP, Hu CJ (2020) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27(1):18. https://doi.org/10.1186/s12929-019-0609-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  131. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  132. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  133. Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R et al (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16:123–134

    CAS  PubMed  CrossRef  Google Scholar 

  134. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Vo VG (2020) Role of body-fluid biomarkers in Alzheimer’s disease diagnosis. Diagnostics (Basel) 10(5):E326. https://doi.org/10.3390/diagnostics10050326

    CAS  CrossRef  PubMed  Google Scholar 

  135. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 376:242–254

    CAS  PubMed  CrossRef  Google Scholar 

  136. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y) 5:272–293

    CrossRef  Google Scholar 

  137. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  138. Guest FL, Rahmoune H, Guest PC (2020) Early diagnosis and targeted treatment strategy for improved therapeutic outcomes in Alzheimer’s disease. Adv Exp Med Biol 1260:175–191

    PubMed  CrossRef  Google Scholar 

Download references

Funding

This research was supported by a National Research Foundation of Korea (NRF) grant, awarded by the Korean government (Ministry of Education, Science and Technology, no. NRF-2019R1G1A109740012).

Conflict of Interest The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.T., Vo, T.K., Vo, G.V. (2021). Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer’s Disease. In: Guest, P.C. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1286. Springer, Cham. https://doi.org/10.1007/978-3-030-55035-6_13

Download citation