Skip to main content

Aspirin as a Potential Geroprotector: Experimental Data and Clinical Evidence

Part of the Advances in Experimental Medicine and Biology book series (PMISB,volume 1286)

Abstract

Aging is a biological process with effects at the molecular, cellular, tissue, organ, system, and organismal levels and is characterized by decline in physical function and higher risks of age-related diseases. The use of anti-aging drugs for disease prevention has become a high priority for science and is a new biomedicine trend. Geroprotectors are compounds which slow aging and increase lifespan of the organism in question. The common painkiller aspirin, a member of the non-steroidal anti-inflammatory drug (NSAID) family, is one of the potential geroprotective agents. Aspirin is often used in treatment of mild to moderate pain. It has anti-inflammatory and anti-pyretic properties and acts as an inhibitor of cyclooxygenase which results in inhibition of prostaglandin. Acetylsalicylic acid as an active compound of aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. Aspirin has shown life-extending effects in numerous model organisms. This chapter reviews the evidence for clinical efficacy of aspirin including cardiovascular disease prevention, anti-cancer effects, and improvement of cognitive function. However, there are some limitations of these therapies, including the risk of excessive bleeding. We have also summarized numerous experimental and analytical data that support health and longevity benefits of aspirin treatment by affecting pro-longevity pathways.

Keywords

  • Aging
  • NSAID
  • Aspirin
  • Age-related diseases
  • Geroscience
  • Geroprotector

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-55035-6_11
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-55035-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 11.1

References

  1. Vaiserman A, Koliada A, Lushchak O (2018) Developmental programming of aging trajectory. Ageing Res Rev 47:105–122

    CrossRef  PubMed  Google Scholar 

  2. Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A (2017) The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 164:127–138

    CAS  PubMed  CrossRef  Google Scholar 

  3. Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB (2019) Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 115:69–78

    CAS  PubMed  CrossRef  Google Scholar 

  4. Vaiserman AM, Lushchak OV, Koliada AK (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev 31:9–35

    PubMed  CrossRef  Google Scholar 

  5. Vaiserman A, Lushchak O (2017) Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. J Transl Med 15(1):160. https://doi.org/10.1186/s12967-017-1259-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A (2020) Nanodelivery of phytobioactive compounds for treating aging-associated disorders. Geroscience 42(1):117–139

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Piskovatska V, Stefanyshyn N, Storey KB, Vaiserman AM, Lushchak O (2019a) Metformin as a geroprotector: experimental and clinical evidence. Biogerontology 20(1):33–48

    CAS  PubMed  CrossRef  Google Scholar 

  8. Dragos D, Gilca M, Gaman L, Vlad A, Iosif L, Stoian I et al. (2017) Phytomedicine in joint disorders. Nutrients 9(1). pii: E70. doi: https://doi.org/10.3390/nu9010070

  9. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231(25):232–235

    CAS  PubMed  CrossRef  Google Scholar 

  10. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    CAS  PubMed  CrossRef  Google Scholar 

  12. Mengle-Gaw LJ, Schwartz BD (2002) Cyclooxygenase-2 inhibitors: promise or peril? Mediat Inflamm 11(5):275–286

    CAS  CrossRef  Google Scholar 

  13. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA (2009) Prostanoids in health and disease. J Lipid Res 50(Suppl):S423–S428

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  14. Loll PJ, Picot D, Garavito RM (1995) The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Biol 2:637–643

    CAS  PubMed  CrossRef  Google Scholar 

  15. Chiang N, Serhan CN (2004) Aspirin triggers formation of anti-inflammatory mediators: new mechanism for an old drug. Discov Med 4(24):470–475

    PubMed  Google Scholar 

  16. Awtry EH, Loscalzo J (2000) Aspirin. Circulation 101(10):1206–1218

    CAS  PubMed  CrossRef  Google Scholar 

  17. Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr Neuropharmacol 8(1):62–68

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span--from yeast to humans. Science 328(5976):321–326

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244(2):305–318

    CAS  PubMed  CrossRef  Google Scholar 

  20. Markaki M, Tavernarakis N (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol J 5(12):1261–1276

    CAS  PubMed  CrossRef  Google Scholar 

  21. Millburn GH, Crosby MA, Gramates LS, Tweedie S, FlyBase Consortium (2016) FlyBase portals to human disease research using Drosophila models. Dis Model Mech 9(3):245–252

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9(3):235–244

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Bitto A, Wang AM, Bennett CF, Kaeberlein M (2015) Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb Perspect Med 5(11) pii: a025114. https://doi.org/10.1101/cshperspect.a025114

  24. Ayyadevara S, Bharill P, Dandapat A, Hu C, Khaidakov M, Mitra S et al (2013) Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid Redox Signal 18(5):481–490

    CAS  PubMed  CrossRef  Google Scholar 

  25. Wan QL, Zheng SQ, Wu GS, Luo HR (2013) Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol 48:499–506. https://doi.org/10.1016/j.exger.2013.02.020

    CAS  CrossRef  PubMed  Google Scholar 

  26. Huang XZ, Chen Y, Wu J, Zhang X, Wu CC, Zhang CY et al (2017) Aspirin and non-steroidal anti-inflammatory drugs use reduce gastric cancer risk: a dose-response meta-analysis. Oncotarget 8(3):4781–4795. https://doi.org/10.18632/oncotarget.13591

    CrossRef  PubMed  Google Scholar 

  27. Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jäger S, Aguilaniu H (2018) A salicylic acid derivative extends the lifespan of Caenorhabditis elegans by activating autophagy and the mitochondrial unfolded protein response. Aging Cell 17(6):e12830. https://doi.org/10.1111/acel.12830

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Phillips T, Leeuwenburgh C (2004) Lifelong aspirin supplementation as a means to extending life span. Rejuvenation Res 7(4):243–251. https://doi.org/10.1089/rej.2004.7.243

    CAS  CrossRef  PubMed  Google Scholar 

  29. Song C, Zhu C, Wu Q, Qi J, Gao Y, Zhang Z et al (2017) Metabolome analysis of effect of aspirin on Drosophila lifespan extension. Exp Gerontol 95:54–62

    CAS  PubMed  CrossRef  Google Scholar 

  30. Keser D, Karataş A (2012) Effects of aspirin and acetaldehyde on longevity and metamorphosis duration of Drosophila melanogaster. Fresenius Environ Bulletin 21(9):2758–2765

    CAS  Google Scholar 

  31. Danilov A, Shaposhnikov M, Shevchenko O, Zemskaya N, Zhavoronkov A, Moskalev A (2015) Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget 6(23):19428–19444

    PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL et al (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7(5):641–650. https://doi.org/10.1111/j.1474-9726.2008.00414.x

    CAS  CrossRef  PubMed  Google Scholar 

  33. Pietrocola F, Castoldi F, Maiuri MC, Kroemer G (2018) Aspirin-another caloric-restriction mimetic. Autophagy 14(7):1162–1163

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Tuttle RS, Yager J, Northrup N (1988) Age and the antihypertensive effect of aspirin in rats. Br J Pharmacol 94(3):755–758

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Desborough MJR, Keeling DM (2017) The aspirin story—from willow to wonder drug. Br J Haematol 177(5):674–683

    PubMed  CrossRef  Google Scholar 

  36. Sirois C, Couture J, Grégoire JP (2012) Acetylsalicylic acid for primary prevention of cardiovascular diseases in older patients with diabetes: do the benefits overcome the risks? Ther Adv Drug Saf 3(5):213–226

    PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Yazdanyar A, Newman AB (2009) The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 25(4):563–577. https://doi.org/10.1016/j.cger.2009.07.007

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Mainous AG, Tanner RJ, Shorr RI, Limacher MC (2014) Use of aspirin for primary and secondary cardiovascular disease prevention in the United States, 2011–2012. J Am Heart Assoc 3(4) pii: e000989. https://doi.org/10.1161/JAHA.114.000989

  39. Loomans-Kropp HA, Pinsky P, Cao Y, Chan AT, Umar A (2019) Association of aspirin use with mortality risk among older adult participants in the prostate, lung, colorectal, and ovarian cancer screening trial. JAMA Netw Open 2(12):e1916729. https://doi.org/10.1001/jamanetworkopen.2019.16729

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Brotons C, Benamouzig R, Filipiak KJ, Limmroth V, Borghi C (2015) A systematic review of aspirin in primary prevention: is it time for a new approach? Am J Cardiovasc Drugs 15(2):113–133

    CAS  PubMed  CrossRef  Google Scholar 

  41. Ittaman SV, VanWormer JJ, Rezkalla SH (2014) The role of aspirin in the prevention of cardiovascular disease. Clin Med Res 12(3-4):147–154

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V (2017) Aspirin for prevention of preeclampsia. Drugs 77(17):1819–1831

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D et al (2017) Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 36(2):289–303

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Warner TD, Nylander S, Whatling C (2011) Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Brit J Clin Pharmacol 72(4):619–633

    CAS  CrossRef  Google Scholar 

  45. Hackam DG, Spence JD (2019) Antiplatelet therapy in ischemic stroke and transient ischemic attack. Stroke 50(3):773–778

    PubMed  CrossRef  Google Scholar 

  46. Kheiri B, Simpson TF, Osman M, Golwala H, Radaideh Q, Dalouk K et al (2020) Meta-analysis of secondary prevention of cryptogenic stroke. Cardiovasc Revasc Med. pii: S1553-8389(20)30025-7. https://doi.org/10.1016/j.carrev.2020.01.016

  47. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S et al (2016) Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 15(9):913–924

    PubMed  CrossRef  Google Scholar 

  48. Anon (1997) CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet 349(9066):1641–1649

    CrossRef  Google Scholar 

  49. Anon (1997) The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet 349:1569–1581

    CrossRef  Google Scholar 

  50. Chen ZM, Sandercock P, Pan HC, Counsell C, Collins R, Liu LS et al (2000) Indications for early aspirin use in acute ischemic stroke: a combined analysis of 40 000 randomized patients from the Chinese acute stroke trial and the international stroke trial. On behalf of the CAST and IST collaborative groups. Stroke 31(6):1240–1249

    CAS  PubMed  CrossRef  Google Scholar 

  51. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516

    CAS  PubMed  CrossRef  Google Scholar 

  52. Rousan TA, Mathew ST, Thadani U (2017) Drug therapy for stable angina pectoris. Drugs 77(3):265–284

    CAS  PubMed  CrossRef  Google Scholar 

  53. Van Diepen S, Fuster V, Verma S, Hamza TH, Siami FS, Goodman SG et al (2017) Dual antiplatelet therapy versus aspirin monotherapy in diabetics with multivessel disease undergoing CABG: FREEDOM insights. J Am Coll Cardiol 69:119–127

    PubMed  CrossRef  CAS  Google Scholar 

  54. Bavry AA, Gong Y, Handberg EM, Cooper-DeHoff RM, Pepine CJ (2015) Impact of aspirin according to type of stable coronary artery disease: insights from a large international cohort. Am J Med 128:137–143

    CAS  PubMed  CrossRef  Google Scholar 

  55. Singh P, Harper Y, Oliphant CS, Morsy M, Skelton M, Askari R et al (2017) Peripheral interventions and antiplatelet therapy: role in current practice. World J Cardiol 9(7):583–593

    PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Hess CN, Hiatt WR (2018) Antithrombotic therapy for peripheral artery disease in 2018. JAMA 319(22):2329–2330

    PubMed  CrossRef  Google Scholar 

  57. Mahmoud AN, Elgendy AY, Rambarat C, Mahtta D, Elgendy IY, Bavry AA (2017) Efficacy and safety of aspirin in patients with peripheral vascular disease: an updated systematic review and meta-analysis of randomized controlled trials. PLoS One 12(4):e0175283. https://doi.org/10.1371/journal.pone.0175283

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Raju N, Sobieraj-Teague M, Bosch J, Eikelboom JW (2016) Updated meta-analysis of aspirin in primary prevention of cardiovascular disease. Am J Med 129(5):e35–e36. https://doi.org/10.1016/j.amjmed.2015.10.046

    CrossRef  PubMed  Google Scholar 

  59. McQuaid KR, Laine L (2006) Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med 119(8):624–638. https://doi.org/10.1016/j.amjmed.2005.10.039

    CAS  CrossRef  PubMed  Google Scholar 

  60. Sorensen HT, Mellemkjaer L, Blot WJ, Nielsen GL, Steffensen FH, McLaughlin JK et al (2000) Risk of upper gastrointestinal bleeding associated with use of low-dose aspirin. Am J Gastroenterol 95(9):2218–2224

    CAS  PubMed  CrossRef  Google Scholar 

  61. Mills EJ, Wu P, Alberton M, Kanters S, Lanas A, Lester R (2012) Low-dose aspirin and cancer mortality: a meta-analysis of randomized trials. Am J Med 125(6):560–567

    CAS  PubMed  CrossRef  Google Scholar 

  62. Lu L, Shi L, Zeng J, Wen Z (2017) Aspirin as a potential modality for the chemoprevention of breast cancer: a dose-response meta-analysis of cohort studies from 857,831 participants. Oncotarget 8(25):40389–40401

    PubMed  PubMed Central  CrossRef  Google Scholar 

  63. Zhong S, Chen L, Zhang X, Yu D, Tang J, Zhao J (2015) Aspirin use and risk of breast cancer: systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomark Prev 24(11):1645–1655

    CAS  CrossRef  Google Scholar 

  64. Huang TB, Yan Y, Guo ZF, Zhang XL, Liu H, Geng J et al (2014) Aspirin use and the risk of prostate cancer: a meta-analysis of 24 epidemiologic studies. Int Urol Nephrol 46(9):1715–1728

    CAS  PubMed  CrossRef  Google Scholar 

  65. Liu Y, Chen JQ, Xie L, Wang J, Li T, He Y et al (2014) Effect of aspirin and other non-steroidal anti-inflammatory drugs on prostate cancer incidence and mortality: a systematic review and meta-analysis. BMC Med 12:55. https://doi.org/10.1186/1741-7015-12-55

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Zhang YP, Wan YD, Sun YL, Li J, Zhu RT (2015) Aspirin might reduce the incidence of pancreatic cancer: a meta-analysis of observational studies. Sci Rep 5:15460. https://doi.org/10.1038/srep15460

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Kong P, Wu R, Liu X, Liu J, Chen S, Ye M et al (2016) The effects of anti-inflammatory drug treatment in gastric cancer prevention: an update of a meta-analysis. J Cancer 7(15):2247–2257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  68. Hochmuth F, Jochem M, Schlattmann P (2016) Meta-analysis of aspirin use and risk of lung cancer shows notable results. Eur J Cancer Prev 25(4):259–268

    CAS  PubMed  CrossRef  Google Scholar 

  69. Elwood PC, Pickering JE, Morgan G, Galante J, Weightman AL, Morris D et al (2018) Systematic review update of observational studies further supports aspirin role in cancer treatment: time to share evidence and decision-making with patients? PLoS One 13(9):e0203957. https://doi.org/10.1371/journal.pone.0203957

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Williams AD, Li YR, So A, Steel L, Carrigan E, Ro V et al (2018) The impact of aspirin use on breast cancer subtype and clinical course. J Surg Res 230:71–79

    CAS  PubMed  CrossRef  Google Scholar 

  71. Chen WY, Holmes MD (2017) Role of aspirin in breast cancer survival. Curr Oncol Rep 19(7):48. https://doi.org/10.1007/s11912-017-0605-6

    CAS  CrossRef  PubMed  Google Scholar 

  72. Wang T, Parada H, McClain KM, Bradshaw PT, Terry MB, Teitelbaum SL et al (2018) Pre-diagnostic aspirin use and mortality after breast cancer. Cancer Causes Control 29(4–5):417–425

    PubMed  CrossRef  Google Scholar 

  73. XZi H, Gao P, Sun JX, Song YX, Tsai CC, Liu J et al (2015) Aspirin and nonsteroidal anti-inflammatory drugs after but not before diagnosis are associated with improved breast cancer survival: a meta-analysis. Cancer Causes Control 26:589–600

    CrossRef  Google Scholar 

  74. Elwood PC, Morgan G, Pickering JE, Galante J, Weightman AL, Morris D et al (2016) Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS One 11(4):e0152402. https://doi.org/10.1371/journal.pone.0152402

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Hurwitz LM, Joshu CE, Barber JR, Prizment AE, Vitolins MZ, Jones MR et al (2019) Aspirin and non-aspirin NSAID use and prostate cancer incidence, mortality, and case fatality in the atherosclerosis risk in communities study. Cancer Epidemiol Biomark Prev 28(3):563–569

    CrossRef  Google Scholar 

  76. Downer MK, Allard CB, Preston MA, Wilson KM, Kenfield SA, Chan JM et al (2019) Aspirin use and lethal prostate cancer in the health professionals follow-up study. Eur Urol Oncol 2(2):126–134

    PubMed  CrossRef  Google Scholar 

  77. Cuzick J (2017) Preventive therapy for cancer. Lancet Oncol 18(8):e472–e482. https://doi.org/10.1016/S1470-2045(17)30536-3

    CrossRef  PubMed  Google Scholar 

  78. Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376(9754):1741–1750

    CAS  PubMed  CrossRef  Google Scholar 

  79. Patrignani P, Patrono C (2016) Aspirin and cancer. J Am Coll Cardiol 68(9):967–976

    CAS  PubMed  CrossRef  Google Scholar 

  80. Bibbins-Domingo K, Preventive Services Task Force US (2016) Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US Preventive Services Task Force Recommendation Statement. Ann Intern Med 164(12):836–845

    PubMed  CrossRef  Google Scholar 

  81. Ye X, Fu J, Yang Y, Chen S (2013) Dose–risk and duration–risk relationships between aspirin and colorectal cancer: a meta-analysis of published cohort studies. PLoS One 8(2):e57578. https://doi.org/10.1371/journal.pone.0057578

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Chubak J, Whitlock EP, Williams SB, Kamineni A, Burda BU, Buist DS et al (2016) Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. preventive services task force. Ann Intern Med 164:814–825

    PubMed  CrossRef  Google Scholar 

  83. Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y et al (2015) Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut 64(9):1419–1425

    CAS  PubMed  CrossRef  Google Scholar 

  84. Paleari L, Puntoni M, Clavarezza M, DeCensi M, Cuzick J, DeCensi A (2016) PIK3CA mutation, aspirin use after diagnosis and survival of colorectal cancer. A systematic review and meta-analysis of epidemiological studies. Clin Oncol (R Coll Radiol) 28(5):317–326

    CAS  CrossRef  Google Scholar 

  85. Emilsson L, Holme O, Bretthauer M, Cook NR, Buring JE, Loberg M et al (2017) Systematic review with meta-analysis: the comparative effectiveness of aspirin vs. screening for colorectal cancer prevention. Aliment Pharmacol Ther 45:193–204

    CAS  PubMed  CrossRef  Google Scholar 

  86. Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087

    PubMed  PubMed Central  CrossRef  Google Scholar 

  87. Ait Ouakrim D, Dashti SG, Chau R, Buchanan DD, Clendenning M, Rosty C et al (2015) Aspirin, ibuprofen, and the risk of colorectal cancer in lynch syndrome. J Natl Cancer Inst 107(9) pii: djv170. https://doi.org/10.1093/jnci/djv170

  88. Dulai PS, Singh S, Marquez E, Khera R, Prokop LJ, Limburg PJ et al (2016) Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis. BMJ 355:i6188. https://doi.org/10.1136/bmj.i6188

    CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Gray RT, Coleman HG, Hughes C, Murray LJ, Cardwell CR (2018) Low-dose aspirin use and survival in colorectal cancer: results from a population-based cohort study. BMC Cancer 18(1):228. https://doi.org/10.1186/s12885-018-4142-y

    CrossRef  PubMed  PubMed Central  Google Scholar 

  90. Yokoyama K, Ishizuka N, Uemura N, Mizokami Y, Hiraishi H, Murata M et al (2018) Effects of daily aspirin on cancer incidence and mortality in the elderly Japanese. Res Pract Thromb Haemost 2(2):274–281

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Walker J, Cattaneo M, Badimon L, Agnelli G, Chan AT, Lanas A et al (2020) Highlights from the 2019 International Aspirin Foundation Scientific Conference, Rome, 28 June 2019: benefits and risks of antithrombotic therapy for cardiovascular disease prevention. Ecancermedicalscience 14:998. https://doi.org/10.3332/ecancer.2020.998

    CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Hultcrantz M, Björkholm M, Dickman PW, Landgren O, Derolf ÅR, Kristinsson SY et al (2018) Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study. Ann Intern Med 168(5):317–325

    PubMed  PubMed Central  CrossRef  Google Scholar 

  93. McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM et al (2018) Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med 379(16):1519–1528

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  94. Zheng SL, Roddick AJ (2019) Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA 321(3):277–287

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Alfonso L, Ai G, Spitale RC, Bhat GJ (2014) Molecular targets of aspirin and cancer prevention. Br J Cancer 111(1):61-67

    Google Scholar 

  96. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K et al (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515.e3

    CAS  PubMed  CrossRef  Google Scholar 

  97. Trauer J, Muhi S, McBryde ES, Al Harbi SA, Arabi YM, Boyle AJ et al (2017) Quantifying the effects of prior acetyl-salicylic acid on sepsis-related deaths: an individual patient data meta-analysis using propensity matching. Crit Care Med 45(11):1871–1879

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Leijte GP, Kiers D, van der Heijden W, Jansen A, Gerretsen J, Boerrigter V et al (2019) Treatment with acetylsalicylic acid reverses endotoxin tolerance in humans in vivo: a randomized placebo-controlled study. Crit Care Med 47(4):508–516

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  99. Chin KY (2017) A review on the relationship between aspirin and bone health. J Osteoporos 2017:3710959. https://doi.org/10.1155/2017/3710959

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Barker AL, Soh SE, Sanders KM, Pasco J, Khosla S, Ebeling PR et al (2020) Aspirin and fracture risk: a systematic review and exploratory meta-analysis of observational studies. BMJ Open 10(2):e026876. https://doi.org/10.1136/bmjopen-2018-026876

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Holcombe A, Ammann E, Espeland MA, Kelley BJ, Manson JE, Wallace R et al (2017) Chronic use of aspirin and total white matter lesion volume: results from the women's health initiative memory study of magnetic resonance imaging study. J Stroke Cerebrovasc Dis 26(10):2128–2136

    PubMed  CrossRef  Google Scholar 

  102. Thoonsen H, Richard E, Bentham P, Gray R, van Geloven N, De Haan RJ et al (2010) Aspirin in Alzheimer’s disease: increased risk of intracerebral hemorrhage: cause for concern? Stroke 41(11):2690–2692

    CAS  PubMed  CrossRef  Google Scholar 

  103. Veronese N, Stubbs B, Maggi S, Thompson T, Schofield P, Muller C et al (2017) Low-dose aspirin use and cognitive function in older age: a systematic review and meta-analysis. J Am Geriatr Soc 65(8):1763–1768

    PubMed  PubMed Central  CrossRef  Google Scholar 

  104. Kennedy JL, Stoner AN, Borish L (2016) Aspirin-exacerbated respiratory disease: prevalence, diagnosis, treatment, and considerations for the future. Am J Rhinol Allergy 30(6):407–413

    PubMed  PubMed Central  CrossRef  Google Scholar 

  105. Shively RM, Hoffman RS, Manini AF (2017) Acute salicylate poisoning: risk factors for severe outcome. Clin Toxicol (Phila) 55(3):175–180

    CAS  CrossRef  Google Scholar 

  106. Straube S, Tramèr MR, Moore RA, Derry S, McQuay HJ (2009) Mortality with upper gastrointestinal bleeding and perforation: effects of time and NSAID use. BMC Gastroenterol 5:9–41. https://doi.org/10.1186/1471-230X-9-41

    CAS  CrossRef  Google Scholar 

  107. Hernández-Díaz S, García Rodríguez LA (2006) Cardioprotective aspirin users and their excess risk of upper gastrointestinal complications. BMC Med 4:22. https://doi.org/10.1186/1741-7015-4-22

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  108. Hernández-Díaz S, Rodríguez LA (2002) Incidence of serious upper gastrointestinal bleeding/perforation in the general population: review of epidemiologic studies. J Clin Epidemiol 55:157–163

    PubMed  CrossRef  Google Scholar 

  109. Delaney JA, Opatrny L, Brophy JM, Suissa S (2007) Drug–drug interactions between antithrombotic medications and the risk of gastrointestinal bleeding. CMAJ 177(4):347–351

    PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Thorat MA (2016) Individualised benefit-harm balance of aspirin as primary prevention measure—a good proof-of-concept, but could have been better. BMC Med 14(1):101. https://doi.org/10.1186/s12916-016-0648-9

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Walker J, Robinson J, Stewart J, Jacob S (2007) Does enteric-coated aspirin result in a lower incidence of gastrointestinal complications compared to normal aspirin? Interact Cardiovasc Thorac Surg 6:519–522. https://doi.org/10.1510/icvts.2007.155788

    CrossRef  PubMed  Google Scholar 

  112. Antithrombotic Trialists' (ATT) Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J et al (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373(9678):1849–1860

    CrossRef  CAS  Google Scholar 

  113. Kelly JP, Kaufman DW, Jurgelon JM, Sheehan J, Koff RS, Shapiro S (1996) Risk of aspirin-associated major upper-gastrointestinal bleeding with enteric-coated or buffered product. Lancet 348(9039):1413–1416

    CAS  PubMed  CrossRef  Google Scholar 

  114. Nelson MR, Liew D, Bertram M, Vos T (2005) Epidemiological modelling of routine use of low dose aspirin for the primary prevention of coronary heart disease and stroke in those aged > or =70. BMJ 330(7503):1306. https://doi.org/10.1136/bmj.38456.676806.8F

    CrossRef  PubMed  PubMed Central  Google Scholar 

  115. Nelson MR, Reid CM, Ames DA, Beilin LJ, Donnan GA et al (2008) Feasibility of conducting a primary prevention trial of low-dose aspirin for major adverse cardiovascular events in older people in Australia: results from the ASPirin in Reducing Events in the Elderly (ASPREE) pilot study. Med J Aust 189(2):105–109

    PubMed  CrossRef  Google Scholar 

  116. Konturek PC, Kania J, Hahn EG, Konturek JW (2006) Ascorbic acid attenuates aspirin-induced gastric damage: role of inducible nitric oxide synthase. J Physiol Pharmacol 57:125–136

    PubMed  Google Scholar 

  117. De Berardis G, Lucisano G, D'Ettorre A, Pellegrini F, Lepore V, Tognoni G, Nicolucci A (2012) Association of aspirin use with major bleeding in patients with and without diabetes. JAMA 307(21):2286–2294

    PubMed  CrossRef  Google Scholar 

  118. Saito Y, Okada S, Ogawa H, Soejima H, Sakuma M, Nakayama M et al (2017) Low-dose aspirin for primary prevention of cardiovascular events in patients with type 2 diabetes mellitus: 10-year follow-up of a randomized controlled trial. Circulation 135(7):659–670. https://doi.org/10.1161/CIRCULATIONAHA.116.025760

    CAS  CrossRef  PubMed  Google Scholar 

  119. He J, Whelton PK, Vu B, Klag MJ (1998) Aspirin and risk of hemorrhagic stroke: a meta-analysis of randomized controlled trials. JAMA 280(22):1930–1935

    CAS  PubMed  CrossRef  Google Scholar 

  120. Saloheimo P, Ahonen M, Juvela S, Pyhtinen J, Savolainen ER, Hillbom M (2006) Regular aspirin-use preceding the onset of primary intracerebral hemorrhage is an independent predictor for death. Stroke 37(1):129–133

    CAS  PubMed  CrossRef  Google Scholar 

  121. Garcia Rodriguez LA, Gaist D, Morton J, Cookson C, Gonzalez-Perez A (2013) Antithrombotic drugs and risk of hemorrhagic stroke in the general population. Neurology 81(6):566–574

    CAS  PubMed  CrossRef  Google Scholar 

  122. Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH et al (2009) Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol 66(6):714–720

    PubMed  CrossRef  Google Scholar 

  123. Jin F, Chung F (2001) Minimizing perioperative adverse events in the elderly. Br J Anaesth 87(4):608–624

    CAS  PubMed  CrossRef  Google Scholar 

  124. Scher KS (1996) Unplanned reoperation for bleeding. Am Surg 62(1):52–55

    CAS  PubMed  Google Scholar 

  125. Albaladejo P, Marret E, Samama CM, Collet JP, Abhay K, Loutrel O et al (2011) Non-cardiac surgery in patients with coronary stents: the RECO study. Heart 97:1566–1572

    PubMed  CrossRef  Google Scholar 

  126. Devereaux PJ, Mrkobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A et al (2008) A meta-analysis of complications attributed to anticoagulation among patients following cutaneous surgery. Dermatol Surg 34(2):160–164

    CrossRef  Google Scholar 

  127. Plümer L, Seiffert M, Punke MA, Kersten JF, Blankenberg S, Zöllner C et al (2017) Aspirin before elective surgery-stop or continue? Dtsch Arztebl Int 114(27–28):473–480

    PubMed  PubMed Central  Google Scholar 

  128. Jang CY, Kwak DK, Kim DH, Lee HM, Hwang JH, Yoo JH (2019) Perioperative antiplatelet in elderly patients aged over 70 years treated with proximal femur fracture: continue or discontinue? BMC Musculoskelet Disord 20(1):124. https://doi.org/10.1186/s12891-019-2504-5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  129. Oscarsson A, Gupta A, Fredrikson M, Järhult J, Nyström M, Pettersson E et al (2010) To continue or discontinue aspirin in the perioperative period: a randomized, controlled clinical trial. Br J Anaesth 104(3):305–312

    CAS  PubMed  CrossRef  Google Scholar 

  130. Kwok CS, Loke YK (2010) Critical overview on the benefits and harms of aspirin. Pharmaceuticals (Basel) 3(5):1491–1506

    CAS  CrossRef  Google Scholar 

  131. Alghamdi AA, Moussa F, Fremes SE (2007) Does the use of preoperative aspirin increase the risk of bleeding in patients undergoing coronary artery bypass grafting surgery? Systematic review and meta-analysis. J Card Surg 22(3):247–256

    PubMed  CrossRef  Google Scholar 

  132. Alcalay J (2001) Cutaneous surgery in patients receiving warfarin therapy. Dermatol Surg 27:756–758

    CAS  PubMed  Google Scholar 

  133. Syed S, Adams BB, Liao W, Pipitone M, Gloster H (2004) A prospective assessment of bleeding and international normalized ratio in warfarin-anticoagulated patients having cutaneous surgery. J Am Acad Dermtol 51:955–957

    CrossRef  Google Scholar 

  134. Kargi E, Babuccu O, Hosnuter M, Babuccu B, Altinyazar C (2002) Complications of minor cutaneous surgery in patients under anticoagulant treatment. Aesthet Plast Surg 26:483–485

    CrossRef  Google Scholar 

  135. Dinakaran D, Sergi CM (2018) Co-ingestion of aspirin and acetaminophen promoting fulminant liver failure: a critical review of Reye syndrome in the current perspective at the dawn of the 21st century. Clin Exp Pharmacol Physiol 45(2):117–121

    CAS  PubMed  CrossRef  Google Scholar 

  136. Gurbel P, Tantry U, Weisman S (2019) A narrative review of the cardiovascular risks associated with concomitant aspirin and NSAID use. J Thromb Thrombolysis 47(1):16–30

    PubMed  CrossRef  Google Scholar 

  137. Russo NW, Petrucci G, Rocca B (2016) Aspirin, stroke and drug-drug interactions. Vasc Pharmacol 87:14–22

    CAS  CrossRef  Google Scholar 

  138. Colebatch AN, Marks JL, van der Heijde DM, Edwards CJ (2012) Safety of nonsteroidal antiinflammatory drugs and/or paracetamol in people receiving methotrexate for inflammatory arthritis: a Cochrane systematic review. J Rheumatol Suppl 90:62–73

    CAS  PubMed  CrossRef  Google Scholar 

  139. Hersh EV, Pinto A, Moore PA (2007) Adverse drug interactions involving common prescription and over-the-counter analgesic agents. Clin Ther 29(Suppl):2477–2497

    CAS  PubMed  CrossRef  Google Scholar 

  140. Mort JR, Aparasu RR, Baer RK (2006) Interaction between selective serotonin reuptake inhibitors and nonsteroidal antiinflammatory drugs: review of the literature. Pharmacotherapy 26(9):1307–1313

    CAS  PubMed  CrossRef  Google Scholar 

  141. Yuet WC, Derasari D, Sivoravong J, Mason D, Jann M (2019) Selective serotonin reuptake inhibitor use and risk of gastrointestinal and intracranial bleeding. J Am Osteopath Assoc 119(2):102–111

    PubMed  CrossRef  Google Scholar 

  142. Miners JO (1989) Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid. Clin Pharmacokinet 17(5):327–344

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministry of Education and Science of Ukraine (no. 0117U006426), National Research Foundation of Ukraine (no. 2020.02/0118) and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada (no. 6793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Lushchak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lushchak, O. et al. (2021). Aspirin as a Potential Geroprotector: Experimental Data and Clinical Evidence. In: Guest, P.C. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1286. Springer, Cham. https://doi.org/10.1007/978-3-030-55035-6_11

Download citation