Skip to main content

Changing Ocean Currents

  • Chapter
  • First Online:
From Hurricanes to Epidemics

Part of the book series: Global Perspectives on Health Geography ((GPHG))

Abstract

The major ocean-related threats to human health will likely be realized as a result of sea level rise, the influence of the ocean on climate and weather, declines in fisheries, and ocean contamination that enters the linked marine and human food chains. To the first order, these ocean changes are due to large-scale warming of the ocean and the related melting of glaciers and ice sheet, as well as the scale and spatial distribution of heavy metal and plastic pollution. Changes in ocean currents linked to global warming likely play a second-order, and still uncertain, role in shaping human health outcomes of these perturbations. Nevertheless, shifting ocean circulation influences the spatial patterns of sea level rise and weather patterns we experience and can set the pace of ecosystem stressors such as marine heat waves, deoxygenation, and acidification which can collectively threaten fisheries and other resources. Our goal is to review some of the ocean circulation changes that may have these human health consequences.

Time and tide wait for no man.

—Geoffrey Chaucer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stocker, T. F., et al. (2013). Technical summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  2. van der Mheen, M., Pattiaratchi, C., & van Sebille, E. (2019). Role of Indian Ocean dynamics on accumulation of buoyant debris. Journal of Geophysical Research: Oceans, 124, 2571–2590. https://doi.org/10.1029/2018JC014806.

    Article  Google Scholar 

  3. Strode, S., Jaeglé, L., & Emerson, S. (2010). Vertical transport of anthropogenic mercury in the ocean, Global Biogeochem. Cycle, 24, GB4014. https://doi.org/10.1029/2009GB003728.

    Article  Google Scholar 

  4. Zhang, R., & Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33, L17712.

    Article  Google Scholar 

  5. Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.

    Article  Google Scholar 

  6. Reguero, B. G., Losada, I. J., & Méndez, F. J. (2019). A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 10, 205. https://doi.org/10.1038/s41467-018-08066-0.

    Article  Google Scholar 

  7. Young, I. R., & Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548–552.

    Article  Google Scholar 

  8. Melet, A., Meyssignac, B., Almar, R., & Le Cozannet, G. (2018). Under-estimated wave contribution to coastal sea-level rise. Nature Climate Change, 8, 234–239. https://doi.org/10.1038/s41558-018-0088-y.

    Article  Google Scholar 

  9. Levitus, S., et al. (2012). World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010. Geophysical Research Letters, 39, L10603. https://doi.org/10.1029/2012GL051106.

    Article  Google Scholar 

  10. Lyman, J. M., & Johnson, G. C. (2014). Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. Journal of Climate, 27, 1945–1957.

    Article  Google Scholar 

  11. Ishii, M., et al. (2017). Accuracy of global upper ocean heat content estimation expected from present observational data sets. Scientific Online Letters on the Atmosphere, 13, 163–167.

    Google Scholar 

  12. Cazenave, A., WCRP Global Sea Level Budget Group, et al. (2018). Global sea-level budget 1993-present. Earth System Science Data, 10, 1551–1590. https://doi.org/10.5194/essd-10-1551-2018.

    Article  Google Scholar 

  13. Chambers, D. P., et al. (2017). Evaluation of the global mean sea level budget between 1993 and 2014. Surveys in Geophysics, 38, 309–327.

    Article  Google Scholar 

  14. Köhl, A. (2014). Detecting processes contributing to interannual halosteric and thermosteric sea level variability. Journal of Climate, 27, 2417–2426. https://doi.org/10.1175/JCLI-D-13-00412.1.

    Article  Google Scholar 

  15. Llovel, W., & Lee, T. (2015). Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophysical Research Letters, 42, 1148–1157. https://doi.org/10.1002/2014GL062611.

    Article  Google Scholar 

  16. Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M., & Stammer, D. (2012). Rapid barotropic sea level rise from ice sheet melting. Journal of Geophysical Research, 117, C06003. https://doi.org/10.1029/2011JC007733.

    Article  Google Scholar 

  17. Munk, W. (2003). Ocean freshening, sea level rising. Science, 300, 2041–2043. https://doi.org/10.1126/science.1085534.

    Article  Google Scholar 

  18. Suzuki, T., & Ishii, M. (2011). Long-term regional sea level changes due to variations in water mass density during the period 1981-2007. Geophysical Research Letters, 38, L21604. https://doi.org/10.1029/2011GL049326.

    Article  Google Scholar 

  19. Llovel, W., & Terray, L. (2016). Observed southern upper-ocean warming over 2005-2014 and associated mechanisms. Environmental Research Letters, 11, 124023. https://doi.org/10.1088/1748-9326/11/12/124023.

    Article  Google Scholar 

  20. Volkov, D. L., Lee, S.-K., Landerer, F. W., & Lumpkin, R. (2017). Decade-long deep-ocean warming detected in the subtropical South Pacific. Geophysical Research Letters, 44, 927–936. https://doi.org/10.1002/2016GL071661.

    Article  Google Scholar 

  21. Piecuch, C. G., Bittermann, K., Kemp, A. C., Ponte, R. M., Little, C. M., Engelhart, S. E., & Lentz, S. J. (2018). River-discharge effects own United State Atlantic and Gulf coast sea-level changes. PNAS, 115(30), 7729–7734. https://doi.org/10.1073/pnas.1805428115.

    Article  Google Scholar 

  22. Griffies, S. M., & Greatbatch, R. J. (2012). Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modelling, 51, 37–72.

    Article  Google Scholar 

  23. Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G., & Frederikse, T. (2019). North Atlantic Ocean circulation and decadal sea level change during the altimetry era. Scientific Reports, 9, 1041. https://doi.org/10.1038/s41598-018-37603-6.

    Article  Google Scholar 

  24. Calafat, F. M., Wahl, T., Lindsten, F., Williams, J., & Frajka-Williams, E. (2018). Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nature Communications, 9, 2571. https://doi.org/10.1038/s41467-018-04898-y.

    Article  Google Scholar 

  25. Minobe, S., Terada, M., Qiu, B., & Schneider, N. (2017). Western boundary sea level: A theory, rule of thumb, and application to climate models. Journal of Physical Oceanography, 47, 957–977.

    Article  Google Scholar 

  26. Wise, A., Hughes, C. W., & Polton, J. A. (2019). Bathymetric influence on the coastal sea level response to ocean gyres at western boundaries. Journal of Physical Oceanography, 48, 2949–2964.

    Article  Google Scholar 

  27. Bromirski, P. D., Miller, A. J., Flick, R. E., & Auad, G. (2011). Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. Journal of Geophysical Research, 116, C07005. https://doi.org/10.1029/2010JC006759.

    Article  Google Scholar 

  28. Merrifield, M. A., & Maltrud, M. E. (2011). Regional sea level trends due to a Pacific trade wind intensification. Geophysical Research Letters, 38, L21605. https://doi.org/10.1029/2011GL049576.

    Article  Google Scholar 

  29. Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., de Young, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I. A., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart, R. S., Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres, D. J., Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., & Zhao, J. (2019). A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516–521.

    Article  Google Scholar 

  30. Barber, D. C., Dyke, A., Hillaire-Marcel, C., & Jennings, A. E. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348. https://doi.org/10.1038/22504.

    Article  Google Scholar 

  31. Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., et al. (2006). Investigating the cause of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.

    Article  Google Scholar 

  32. Palter, J. B. (2015). The role of the Gulf Stream in Europe’s climate. Annual Review of Marine Science, 7, 113–137. https://doi.org/10.1146/annurev-marine-010814-015656.

    Article  Google Scholar 

  33. Buckley, M. W., & Marshall, J. (2016). Observations, inferences, and mechanisms of Atlantic meridional overturning circulation variability: A review. Reviews of Geophysics, 54, 5–63. https://doi.org/10.1002/2015RG000493.

    Article  Google Scholar 

  34. Yin, J., Schlesinger, M. E., & Stouffer, R. J. (2009). Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2, 262–266. https://doi.org/10.1038/ngeo462.

    Article  Google Scholar 

  35. Palter, J. B., Frolicher, T., Paynter, D., & John, J. (2018). Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5K. Earth System Dynamics, 9, 817. https://doi.org/10.5194/esd-9-817-2018.

    Article  Google Scholar 

  36. Piecuch, C. G., Dangendorf, S., Gawarkiewicz, G. G., Little, C. M., Ponte, R. M., & Yang, J. (2019). How is New England coastal sea level related to the Atlantic meridional overturning circulation at 26°N? Geophysical Research Letters, 46, 5351–5360. https://doi.org/10.1029/2019GL083073.

    Article  Google Scholar 

  37. Herweijer, C., Seager, R., Winton, M., & Clement, A. (2005). Why ocean heat transport warms the global mean climate. Tellus, 57, 662–675.

    Article  Google Scholar 

  38. Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L., & Frölicher, T. L. (2013). Connecting changing ocean circulation with changing climate. Journal of Climate, 26(7), 2268–2278.

    Article  Google Scholar 

  39. Trossman, D. S., Palter, J. B., Merlis, T. M., Huang, Y., & Xia, Y. (2016). Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change. Geophysical Research Letters, 43, 3935–3943. https://doi.org/10.1002/2016GL067931.

    Article  Google Scholar 

  40. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M., & Brayshaw, D. J. (2012). Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geoscience, 5, 313–317. https://doi.org/10.1038/ngeo1438.

    Article  Google Scholar 

  41. Zhang, R., & Delworth, T. L. (2007). Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophysical Research Letters, 34, L23708. https://doi.org/10.1029/2007GL031601.

    Article  Google Scholar 

  42. Yamamoto, A., & Palter, J. B. (2016). The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature. Nature Communication, 7, 1093. https://doi.org/10.1038/ncomms10930.

    Article  Google Scholar 

  43. Thompson, D. W., & Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89. https://doi.org/10.1126/science.1058958.

    Article  Google Scholar 

  44. Francis, J. A., & Skific, N. (2015). Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philosophical Transactions of the Royal Society A, 373, 20140170. https://doi.org/10.1098/rsta.2014.0170.

    Article  Google Scholar 

  45. Francis, J. A., & Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10, 014005.

    Article  Google Scholar 

  46. Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., & Yoon, J.-H. (2014). Weakening of the stratospheric polar vortex by Arctic sea ice loss. Nature Communications, 4, 4646.

    Article  Google Scholar 

  47. Hu, D., Guan, Z., Tian, W., & Ren, R. (2018). Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 9, 1697.

    Article  Google Scholar 

  48. Gastineau, G., L’Hévéder, B., Codron, F., & Frankignoul, C. (2016). Mechanisms determining the winter atmospheric response to the Atlantic overturning circulation. Journal of Climate, 29, 3767–3785.

    Article  Google Scholar 

  49. Gruber, N. (1943). 2011: Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philosophical Transactions of The Royal Society A, 369, 1980–1996. https://doi.org/10.1098/rsta.2011.0003.

    Article  Google Scholar 

  50. Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., & Tremblay, G.-H. (2005). A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnology and Oceanography, 50, 1654–1666.

    Article  Google Scholar 

  51. Brickman, D., Hebert, D., & Wang, Z. (2018). Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Continental Shelf Research, 156, 11–22. https://doi.org/10.1016/j.csr.2018.01.001.

    Article  Google Scholar 

  52. Claret, M., Galbraith, E. D., Palter, J. B., Bianchi, D., Fennel, K., Gilbert, D., & Dunne, J. P. (2018). Rapid coastal deoxygenation due to large scale ocean circulation shift in the Northwest Atlantic. Nature Climate Change, 8, 868–872.

    Article  Google Scholar 

  53. Levitus, S., Antonov, J. I., Wang, J., Delworth, T. L., Dixon, K. W., & Broccoli, A. J. (2001). Anthropogenic warming of Earth’s climate system. Science, 292(5515), 267–270. https://doi.org/10.1126/science.1058154.

    Article  Google Scholar 

  54. von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D., Champollion, N., et al. (2016). Earth’s energy imbalance: An imperative for monitoring. Nature Climate Change, 6, 138–144. https://doi.org/10.1038/NCLIM-15030445C.

    Article  Google Scholar 

  55. Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., & Wang, F. (2013). Observations: Ocean. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  56. Marshall, J., Scott, J. R., Armour, K. C., Campin, J.-M., Kelley, M., & Romanou, A. (2015). The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dynamics, 44(7–8), 2287–2299.

    Article  Google Scholar 

  57. Garuba, O. A., Lu, J., Liu, F., & Singh, H. A. (2018). The active role of the ocean in the temporal evolution of climate sensitivity. Geophysical Research Letters, 45(1), 306–315.

    Article  Google Scholar 

  58. Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014.

    Article  Google Scholar 

  59. Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560, 360–364.

    Article  Google Scholar 

  60. Oliver, E. C. J., et al. (2018). Longer and more frequent marine heat waves over the past century. Nature Communication, 9, 1324.

    Article  Google Scholar 

  61. Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystems services. Nature Climate Change, 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1.

    Article  Google Scholar 

  62. Pershing, A. J., et al. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350, 809–812.

    Article  Google Scholar 

  63. Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N., Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., & Zhu, D. (2018). Global carbon budget 2017. Earth System Science Data, 10, 405–448. https://doi.org/10.5194/essd-10-405-2018.

    Article  Google Scholar 

  64. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366. https://doi.org/10.1126/science.1097329.

    Article  Google Scholar 

  65. Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography, 22, 36–47. https://doi.org/10.5670/oceanog.2009.95.

    Article  Google Scholar 

  66. Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., & Hales, B. (2008). Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science, 320, 1490–1492. https://doi.org/10.1126/science.1155676.

    Article  Google Scholar 

  67. Harris, K. E., DeGrandpre, M. D., & Hales, B. (2013). Aragonite saturation state dynamics in a coastal upwelling zone. Geophysical Research Letters, 40, 2720–2725. https://doi.org/10.1002/grl.50460.

    Article  Google Scholar 

  68. Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic, B. K., & Key, R. M. (2018). Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proceedings of the National Academy of Science of the USA, 115(45), 11700–11705. https://doi.org/10.1073/pnas.1804250115.

    Article  Google Scholar 

  69. Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5, 3794. https://doi.org/10.1038/ncomms4794.

    Article  Google Scholar 

  70. MacLean, M., Breeze, H., Walmsley, J., & Corkum, J. (Eds.) (2013). State of the Scotian Shelf Report. Canadian Technical Report of Fisheries and Aquatic Sciences 3074.

    Google Scholar 

  71. Gledhill, D. K., White, M. M., Salisbury, J., Thomas, H., Mlsna, I., Liebman, M., Mook, B., Grear, J., Candelmo, A. C., Chambers, R. C., Gobler, C. J., Hunt, C. W., King, A. L., Price, N. N., Signorini, S. R., Stancioff, E., Stymiest, C., Wahle, R. A., Waller, J. D., Rebuck, N. D., Wang, Z. A., Capson, T. L., Morrison, J. R., Cooley, S. R., & Doney, S. C. (2015). Ocean and coastal acidification off New England and Nova Scotia. Oceanography, 28(2), 182–197. https://doi.org/10.5670/oceanog.2015.41.

    Article  Google Scholar 

  72. Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., & Monfray, P. (2002). Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles, 16(2), 6–1. https://doi.org/10.1029/2001GB001445.

    Article  Google Scholar 

  73. Ito, T., Minobe, S., Long, M. C., & Deutsch, C. (2017). Upper ocean O2 trends: 1958-2015. Geophysical Research Letters, 44, 4214–4223. https://doi.org/10.1002/2017GL073613.

    Article  Google Scholar 

  74. Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339. https://doi.org/10.1038/nature21399.

    Article  Google Scholar 

  75. Oschlies, A., Brandt, P., Stramma, L., & Schmidtko, S. (2018). Drivers and mechanisms of ocean deoxygenation. Nature Geoscience, 11, 467–473.

    Article  Google Scholar 

  76. Takano, Y., Ito, T., & Deutsch, C. (2018). Projected centennial oxygen trends and their attribution to distinct ocean climate forcings. Global Biogeochemical Cycles, 32, 1329. https://doi.org/10.1029/2018GB005939.

    Article  Google Scholar 

  77. MacKinnon, J., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., Laurent, L. C. S., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., & Alford, M. H. (2017). Climate process team on internal-wave driven ocean mixing. Bulletin of the American Meteorological Society, 98(11), 2429–2454.

    Article  Google Scholar 

  78. Palter, J. B., & Trossman, D. S. (2018). The sensitivity of future ocean oxygen concentrations to changes in ocean circulation. Global Biogeochemical Cycles, 32, 738–751. https://doi.org/10.1002/2017GB005777.

    Article  Google Scholar 

  79. Somavilla, R., González-Pola, C., & Fernández-Diaz, J. (2017). The warmer the ocean surface, the shallower the mixed layer. How much of this is true? Journal of Geophysical Research Oceans, 122, 7698–7716. https://doi.org/10.1002/2017JC013125.

    Article  Google Scholar 

  80. Keeling, R. F., Körtzinger, A., & Gruber, N. (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2(1), 199–229.

    Article  Google Scholar 

  81. Stramma, L. G., Johnson, C., Spintall, J., & Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876), 655–658. https://doi.org/10.1126/science.1153847.

    Article  Google Scholar 

  82. Montes, I., Dewitte, B., Gutknecht, E., Paulmier, A., Dadou, I., Oschlies, A., & Garçon, V. (2014). High-resolution modeling of the Eastern tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation. Journal of Geophysical Research: Oceans, 119, 5515–5532. https://doi.org/10.1002/2014JC009858.

    Article  Google Scholar 

  83. Busecke, J. J. M., Resplandy, L., & Dunne, J. P. (2019). The equatorial undercurrent and the oxygen minimum zone in the Pacific. Geophysical Research Letters, 46, 6716. https://doi.org/10.1029/2019GL082692.

    Article  Google Scholar 

  84. Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., Crusius, J., Ito, T., Baumgartner, T., Ferreira, V., Mey, J., & van Geen, A. (2014). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345, 665–668. https://doi.org/10.1126/science.1252332.

    Article  Google Scholar 

  85. Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518, 390–394. https://doi.org/10.1038/nature14235.

    Article  Google Scholar 

  86. Jacox, M. G., Edwards, C. A., Hazen, E. L., & Bograd, S. J. (2018). Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. Journal of Geophysical Research: Oceans, 123, 7332–7350. https://doi.org/10.1029/2018JC014187.

    Article  Google Scholar 

  87. Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., & Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7, 585–619. https://doi.org/10.5194/bg-7-585-2010.

    Article  Google Scholar 

  88. Manzello, D., Enochs, I., Musielewicz, S., Carlton, R., & Gledhill, D. (2013). Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world. Journal of Geophysical Research, Oceans, 118, 5312–5321. https://doi.org/10.1002/jgrc.20378.

    Article  Google Scholar 

  89. Hauer, M. E., Evans, J. M., & Mishra, D. R. (2016). Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change, 6, 691–695. https://doi.org/10.1038/nclimate2961.

    Article  Google Scholar 

  90. Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the US population landscape. Nature Climate Change, 7, 321–325. https://doi.org/10.1038/nclimate3271.

    Article  Google Scholar 

  91. Wernberg, T., et al. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169–172.

    Article  Google Scholar 

  92. Oliver, E. C. J., et al. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 8, 16101.

    Article  Google Scholar 

  93. Hughes, T. P., et al. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543, 373–377.

    Article  Google Scholar 

  94. Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G., & Sumaila, U. R. (2017). Projected change in global fisheries revenues under climate change. Scientific Reports, 6, 32607. https://doi.org/10.1038/srep32607.

    Article  Google Scholar 

  95. Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132–1135. https://doi.org/10.1126/science.aaa1605.

    Article  Google Scholar 

  96. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341, 1239–1242.

    Article  Google Scholar 

  97. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, & Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds.), Climate Change 2013: The Physical Science Basis. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  98. Waugh, D. W., Sobel, A. H., & Polvani, L. M. (2017). What is the polar vortex and how does it influence weather? BAMS, 98, 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1.

    Article  Google Scholar 

  99. Mora, C., Wei, C.-L., Rollo, A., Amaro, T., Baco, A. R., Billet, D., Bopp, L., Chen, Q., Collier, M., Danovaro, R., Gooday, A. J., Grupe, B. M., Halloran, P. R., Ingels, J., Jones, D. O. B., Levin, L. A., Nakano, H., Norling, K., Ramirez-Llodra, E., Rex, M., Ruhl, H. A., Smith, C. R., Sweetman, A. K., Thurber, A. R., Tjiputra, J. F., Usseglio, P., Watling, L., Wu, T., & Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11(10), e1001682. https://doi.org/10.1371/journsal.pbio.1001682.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trossman, D., Palter, J. (2021). Changing Ocean Currents. In: Conrad, K. (eds) From Hurricanes to Epidemics. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-55012-7_2

Download citation

Publish with us

Policies and ethics