An Ontology-Based Approach to Support Formal Verification of Concurrent Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12232)


Formal verification ensures the absence of design errors in a system with respect to system’s requirements. This is especially important for the control software of critical systems, ranging from automatic components of avionics and spacecrafts to modules of distributed banking transactions. In this paper, we present a verification support framework that enables automatic extraction of a concurrent system’s requirements from the technical documentation and formal verification of the system design using an external or built-in verification tool that checks whether the system meets the extracted requirements. Our support approach also provides visualization and editing options for both the system model and requirements. The key data components of our framework are ontological descriptions of the verified system and its requirements. We describe the methods used in our support framework and we illustrate their work for the use case of an automatic control system.


Ontology Information extraction Formal verification Requirement engineering Formal semantics 



This research has been supported by Russian Foundation for Basic Research (grant 17-07-01600), Funding State budget of the Russian Federation (IAE project No. AAAA-A17-11706061006-6), and by the BMBF project HPC2SE at WWU Muenster (Germany).


  1. 1.
    Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative, real-time, and probabilistic property specification patterns using a structured English grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)CrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Henzinger, Th.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer, Heidelberg (2018).
  3. 3.
    Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state verification. In: Proceedings of the 21st International Conference on Software Engineering (ICSE-99), pp. 411–420. ACM, New York (1999)Google Scholar
  4. 4.
    Garanina, N., Sidorova, E.: Context-dependent lexical and syntactic disambiguation in ontology population. In: Proceedings of the 25th International Workshop on Concurrency, Specification and Programming (CS&P-16), pp. 101–112. Humboldt-Universitat zu Berlin, Berlin (2016)Google Scholar
  5. 5.
    Garanina, N., Sidorova, E., Bodin, E.: A multi-agent text analysis based on ontology of subject domain. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 102–110. Springer, Heidelberg (2015). Scholar
  6. 6.
    Garanina, N., Sidorova, E., Kononenko, I., Gorlatch, S.: Using multiple semantic measures for coreference resolution in ontology population. Int. J. Comput. 16(3), 166–176 (2017)Google Scholar
  7. 7.
    Garanina, N., Zubin, V., Lyakh, T., Gorlatch, S.: An ontology of specification patterns for verification of concurrent systems. In: Proceedings of the 17th International Conference on Intelligent Software Methodology Tools, and Techniques (SoMeT\(\_\)18), pp. 515–528. IOS Press, Amsterdam (2018)Google Scholar
  8. 8.
    Garanina, N., Anureev, I., Zyubin, V.: Constructing verification-oriented domain-specific process ontologies. Syst. Inform. 14, 19–30 (2019)Google Scholar
  9. 9.
    Garanina, N., Anureev, I., Borovikova, O.: Verification oriented process ontology. Autom. Control. Comput. Sci. 53(7), 584–594 (2019). Scholar
  10. 10.
    Garanina, N., Borovikova, O.: Ontological approach to checking event consistency for a set of temporal requirements. In: Proceedings of 5th International Conference on Engineering, Computer and Information Sciences, Novosibirsk, Russia. IEEE (2019) Google Scholar
  11. 11.
    Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Böorger, E. (ed.) Specification and Validation Methods. Oxford University Press, Oxford (1995)Google Scholar
  12. 12.
    Konrad, S., Cheng, B.: Real-time specification patterns. In: Proceedings of 27th International Conference on Software Engineering, pp. 372–381. ACM, New York (2005)Google Scholar
  13. 13.
    Krishnan J., Coronado P., Reed T.: SEVA: a systems engineer’s virtual assistant. In: Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE-19), Palo Alto, California, USA. CEUR-WS (2019).
  14. 14.
    Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.: RoboChart: modelling and verification of the functional behaviour of robotic applications. Softw. Syst. Model. 18(5), 3097–3149 (2019). Scholar
  15. 15.
    Mondragón, O., Gates, A., Roach, S.: Prospec: support for elicitation and formal specification of software properties. Electron. Notes Theor. Comput. Sci. 89(2), 67–88 (2003)CrossRefGoogle Scholar
  16. 16.
    Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Salamah, S., Gates, A., Kreinovich, V.: Validated templates for specification of complex LTL formulas. J. Syst. Softw. 85(8), 1915–1929 (2012)CrossRefGoogle Scholar
  18. 18.
    Shanmugham, S., Roberts, C.: Application of graphical specification methodologies to manufacturing control logic development: a classification and comparison. Int. J. Comput. Integr. Manuf. 11(2), 142–152 (2010)CrossRefGoogle Scholar
  19. 19.
    Smith, M., Holzmann, G., Etessami, K.: Events and constraints: a graphical editor for capturing logic requirements of programs. In: Proceedings of 5th IEEE International Symposium on Requirements Engineering, Toronto, Canada, pp. 14–22. IEEE (2001)Google Scholar
  20. 20.
    Vu, A.V., Ogawa, M.: Formal semantics extraction from natural language specifications for ARM. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 465–483. Springer, Cham (2019). Scholar
  21. 21.
    Wong, P.Y.H., Gibbons, J.: Property specifications for workflow modelling. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 56–71. Springer, Heidelberg (2009). Scholar
  22. 22.
    Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property specification and verification for service composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 156–168. Springer, Heidelberg (2006). Scholar
  23. 23.
    Zyubin, V.: Hyper-automaton: a model of control algorithms. In: Proceedings of Siberian Conference on Control and Communications, Tomsk, Russia, pp. 51–57. IEEE (2007)Google Scholar
  24. 24.
    Zyubin, V., Liakh, T., Rozov, A.: Reflex language: a practical notation for cyberphysical systems. Syst. Inform. 12, 85–104 (2018)Google Scholar
  25. 25.
    Argosim. Accessed 27 Nov 2019
  26. 26.
    HermiT OWL Reasoner. Accessed 27 Nov 2019
  27. 27.
    Model Based Systems Engineering. Accessed 27 Nov 2019
  28. 28.
    Web Ontology Language. Accessed 27 Nov 2019
  29. 29.
    Editor Protégé. Accessed 27 Nov 2019
  30. 30.
  31. 31.
    SWRL: a Semantic Web Rule Language combining OWL and RuleML. Accessed 27 Nov 2019
  32. 32.
    Software Cost Reduction. Accessed 27 Nov 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.A.P. Ershov Institute of Informatics SystemsNovosibirskRussia
  2. 2.Institute of Automation and ElectrometryNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.St. Petersburg UniversitySaint PetersburgRussia
  5. 5.University of MuensterMünsterGermany

Personalised recommendations