Skip to main content

Reconfigurable Computing and Hardware Acceleration in Health Informatics

Part of the Intelligent Systems Reference Library book series (ISRL,volume 192)

Abstract

Health informatics connects biomedical engineering with information technology to devise a modern eHealth system which often requires precise biosignal processing. This “biosignal” is essentially an electrophysiological signal from a living organism. In practice, these signals are frequently used to assess patients’ health and to discover bio-physiological anonymities. However, as most of the biosignal processing units are multichannel systems with extensive datasets, conventional computation techniques often fail to offer immediate execution of data processing. Reconfigurable architecture offers a tangible solution to this problem by utilizing fast parallel computation based on the Field Programmable Gate Array (FPGA). This computation technique ensures “Hardware Acceleration” which essentially means the exclusive utilization of hardware resources to expedite computational tasks. This is the technique of designing application-specific circuits rather than using the general purpose processors to do the signal processing. Because of its low cost and fast computation property, reconfigurable architecture is characteristically suitable for Health Informatics and has become one of the fastest growing research fields of recent years. In literature, several works are found focusing on the efficient use of FPGAs as the biomedical computation units. Some of these researches involve fundamental spatiotemporal signal analysis like Fourier transform, power spectrum density measurement, and identifying significant signal peaks. In other studies, hardware acceleration is used to compress and predict the signal for data storage, processing, and transmission. Some of the works include digital filter designing for denoising the acquired signal, while a few of the advanced research projects incorporated reconfigurable architectures to develop artificial bio-organs and high-level prosthesis as a part of rehabilitation. In this chapter, these works will be briefly reviewed to find out the state-of-the-art research trends in this research field.

Keywords

  • Biosignal
  • Electrophysiology
  • Signal processing
  • FPGA

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-54932-9_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-54932-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11
Fig. 9.12
Fig. 9.13
Fig. 9.14
Fig. 9.15
Fig. 9.16

References

  1. Escabí, M.A.: Biosignal processing. In: Enderle, J.D., Blanchard, S.M., Bronzino, J.D. (eds.) Introduction to Biomedical Engineering, 2 edn, pp. 549–625. Academic Press, Boston (2005)

    Google Scholar 

  2. Rangayyan, R.M., Rangayyan, R.M.: Biomedical Signal Analysis, 2nd edn. Wiley, Hoboken, New Jersey (2015)

    CrossRef  Google Scholar 

  3. Ünsalan, C., Tar, B.: Digital System Design with FPGA: Implementation Using Verilog and VHDL. McGraw-Hill Education, New York, NY (2017)

    Google Scholar 

  4. Woods, R., Mcallister, J., Turner, R., Yi, Y., Lightbody, G.: FPGA-Based Implementation of Signal and Data Processing Systems. Wiley, New York (2017)

    CrossRef  Google Scholar 

  5. Iles, G., Jones, J., Rose, A.: Experience powering Xilinx Virtex-7 FPGAs. J. Instrum. 8(12), C12037 (2013)

    CrossRef  Google Scholar 

  6. Chowdhury, M.H., Cheung, R.C.C.: Reconfgurable architecture for multi-lead ECG signal compression with high-frequency noise reduction. Sci. Rep. 9 (2019)

    Google Scholar 

  7. Divya Krishna, K., et al.: Computer aided abnormality detection for kidney on FPGA based IoT enabled portable ultrasound imaging system. Innov. Res. Biomed. Eng. 37(4), 189–197 (2016)

    Google Scholar 

  8. Wu, J.X., Lin, C.H., Du, Y.C., Chen, P.J., Shih, C.C., Chen, T.: Estimation of arteriovenous fistula stenosis by FPGA based Doppler flow imaging system. In: International Ultrasonics Symposium, pp. 1–4 (2015)

    Google Scholar 

  9. Kumari, L.V.R., Sai, Y.P., Balaji, N., Viswada, K.: FPGA based arrhythmia detection. Proc. Comput. Sci. 57, 970–979 (2015)

    CrossRef  Google Scholar 

  10. de Carvalho, H.H., Moreno, R.L., Pimenta, T.C., Crepaldi, P.C., Cintra, E.: A heart disease recognition embedded system with fuzzy cluster algorithm. Comput. Methods Programs Biomed. 110(3), 447–454 (2013)

    CrossRef  Google Scholar 

  11. Chatterjee, H.K., Gupta, R., Mitra, M.: Real time P and T wave detection from ECG using Fpga. Proc. Technol. 4, 840–844 (2012)

    CrossRef  Google Scholar 

  12. Rasu, R., Sundaram, P.S., Santhiyakumari, N.: FPGA based non-invasive heart rate monitoring system for detecting abnormalities in Fetal. In: International Conference on Signal Processing and Communication Engineering Systems, pp. 375–379 (2015)

    Google Scholar 

  13. Boujelben, O., Bahoura, M.: FPGA implementation of an automatic wheezes detector based on MFCC and SVM. In: International Conference on Advanced Technologies for Signal and Image Processing, ATSIP, pp. 647–650 (2016)

    Google Scholar 

  14. Chowdhury, M.H., Cheung, R.C.C.: Point-of-care EMG processor for the differential diagnosis of neuropathy and myopathy. In: IEEE EMB Special Topic Conference on Healthcare Innovations and Point-of-Care Technologies (2019)

    Google Scholar 

  15. Wienbrandt, L., Kässens, J.C., González-Domínguez, J., Schmidt, B., Ellinghaus, D., Schimmler, M.: FPGA-based acceleration of detecting statistical epistasis in GWAS. Proc. Comput. Sci. 29, 220–230 (2014)

    CrossRef  Google Scholar 

  16. Dwivedi, A., Ghosh, S., Londhe, N.: Low-power FIR filter design using hybrid artificial bee colony algorithm with experimental validation over FPGA. Circuits Syst. Signal Process. 36(1), 156–180 (2017)

    CrossRef  Google Scholar 

  17. Eminaga, Y., Coskun, A., Kale, I.: Multiplier free implementation of 8-tap daubechies wavelet filters for biomedical applications. In: New Generation of CAS, NGCAS, pp. 129–132 (2017)

    Google Scholar 

  18. Xin, Y., Li, W., Zhang, Z., Cheung, R., Song, D., Berger, T.: An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics. IEEE/ACM Trans. Comput. Biol. Bioinforma. 12(5), 1034–1047 (2015)

    CrossRef  Google Scholar 

  19. Liu, B., Zhang, Z., Fan. H., Fu, Q.: Compression via compressive sensing: a low-power framework for the telemonitoring of multi-channel physiological signals. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 9–12 (2013)

    Google Scholar 

  20. Kim, D.S., Kwon, J.S.: A lossless multichannel bio-signal compression based on low-complexity joint coding scheme for portable medical devices. Sensors 14(9), 17516–17529 (2014)

    CrossRef  Google Scholar 

  21. Lai, S.C., Chien, W.C., Lan, C.S., Lee, M.K., Luo, C.H., Lei, S.F.: An efficient DCT-IV-based ECG compression algorithm and its hardware accelerator design. In: IEEE International Symposium on Circuits and Systems, vol. 101, pp. 1296–1299 (2013)

    Google Scholar 

  22. Luo, C.-H., et al.: An ECG acquisition system prototype design with flexible PDMS dry electrodes and variable transform length DCT-IV based compression algorithm. IEEE Sens. J. 16(23), 8244–8254 (2016)

    Google Scholar 

  23. Diftler, M.A., et al.: RoboGlove—a robonaut derived multipurpose assistive device. In: International Conference on Robotics and Automation (2014)

    Google Scholar 

  24. Oballe-Peinado, O., Hidalgo-Lopez, J.A., Sanchez-Duran, J.A., Castellanos-Ramos, J., Vidal-Verdu, F.: Architecture of a tactile sensor suite for artificial hands based on FPGAs. In: IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 112–117 (2012)

    Google Scholar 

  25. Kumar, J., Kumar, N., Pankaj, D., Kumar, A.: Implementation of real time control algorithm for gait assistive exoskeleton devices for stroke survivors. In: International Conference on Electronic Systems, Signal Processing, and Computing Technologies, pp. 271–275 (2014)

    Google Scholar 

  26. Wöhrle, H., Tabie, M., Kim, S.K., Kirchner, F., Kirchner, E.A.: A hybrid FPGA-based system for EEG- and EMG-based online movement prediction. Sensors 17(7), 1–41 (2017)

    CrossRef  Google Scholar 

  27. Ang, L.-M., Seng, K.P., Heng, T.Z.: Information communication assistive technologies for visually impaired people. Int. J. Ambient Comput. Intell. 7(1), 45–68 (2016)

    CrossRef  Google Scholar 

  28. Kim, R.H., Kang, C.H., Bae, J.H., Kang, B.S.: Development of a continuum robot using pneumatic artificial muscles. Int. Conf. Control. Autom. Syst. Iccas, 1401–1403 (2014)

    Google Scholar 

  29. Li, P., Yu, L., Fang, Q., Lee, S.-Y.: A simplification of Cobelli’s glucose-insulin model for type 1 diabetes mellitus and its FPGA implementation. Med. Biol. Eng. Comput. 54(10), 1563–1577 (2016)

    CrossRef  Google Scholar 

  30. Vavouras, M., Duarte, R.P., Armato, A., Bouganis, C.S.: A hybrid ASIC/FPGA fault-tolerant artificial pancreas. In: International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, pp. 261–267 (2017)

    Google Scholar 

  31. Slepova, L.O., Zhilenkov, A.A.: Synthesis of model of hardware realization of LIF-model of biological neuron on the basis of FPGA. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, vol. 2018, pp. 992–996 (2018)

    Google Scholar 

  32. Zhang, G., Tao, H., Shao, J., Lei, S.C., Liang, F.: Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application. Ieice Electron. Express 9(17), 1402–1407 (2012)

    CrossRef  Google Scholar 

  33. Boschmann, A., Agne, A., Witschen, L., Thombansen, G., Kraus, F., Platzner, M.: FPGA-based acceleration of high density myoelectric signal processing. In: International Conference on ReConFigurable Computing and FPGAs, ReConFig, pp. 1–8 (2016)

    Google Scholar 

  34. Srivastava, N.R., Troyk, P.R., Bradley, D.: FPGA based visual prosthesis device for testing visual perception on non human primates. In: EEE International Conference on Electro/Information Technology, pp. 21–25 (2007)

    Google Scholar 

  35. Al-Yaman, M., Al-Atabany, W., Bystrov, A., Degenaar, P.: FPGA design for dual-spectrum visual scene preparation in retinal prosthesis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2014, pp. 4691–4694 (2014)

    Google Scholar 

  36. Li, W.X.Y., Chan, R.H.M., Zhang, W., Cheung, R.C.C., Song, D., Berger, T.W.: High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(4), 489–501 (2011)

    CrossRef  Google Scholar 

  37. Li, W.X.Y., Chan, R.H.M., Berger, T.W., Song, D., Cheung, R.C.C.: A dual mode FPGA design for the hippocampal prosthesis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4579–4582 (2012)

    Google Scholar 

  38. Li, W.X.Y., Cheung, R.C.C., Chan, R.H.M., Song, D., Berger, T.W.: Real-time prediction of neuronal population spiking activity using FPGA. Biomed. Circuits Syst. IEEE Trans. 7(4), 489–498 (2013)

    CrossRef  Google Scholar 

  39. Song, D., Robinson, B.S., Hampson, R.E., Marmarelis, V.Z., Deadwyler, S.A., Berger, T.W.: Sparse large-scale nonlinear dynamical modeling of human hippocampus for memory prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 272–280 (2018)

    CrossRef  Google Scholar 

  40. Chowdhury, M.H., Hossain, Q.D.: Development of two wireless ECG monitoring systems and their performance assessment. In: International Conference on Informatics, Electronics Vision, pp. 459–464 (2018)

    Google Scholar 

  41. Shouleice, R.B., Bass, G.: From bench to bedside-developments in electrocardiology. Eng. Journal, Inst. Eng. Irel. 56(4), 47–49 (2002)

    Google Scholar 

  42. Chowdhury, M.H., Hossain, Q.D., Saha, P., Rahaman, M.M.: Design, fabrication and performance evaluation of a three electrode ECG recorder. In: International Conference on Innovations in Science, Engineering and Technology (2016)

    Google Scholar 

  43. Chowdhury, M.H., Hossain, Q.D., Hossain, M.A., Cheung, R.C.C.: Single feed circularly polarized crescent-cut and extended corner square microstrip antennas for wireless biotelemetry. Int. J. Electr. Comput. Eng. 9(3), 1902–1909 (2019)

    Google Scholar 

  44. Proakis, J.G., Manolakis, D.G.: Digital signal processing, 4th editio. Pearson/Prentice Hall, Upper Saddle River, NJ (2007)

    Google Scholar 

  45. Rabiner, L.: On the use of symmetry in FFT computation. IEEE Trans. Acoust. 27(3), 233–239 (1979)

    CrossRef  Google Scholar 

  46. Olivas, J.Á., Sepúlveda, R., Montiel, O., Castillo, O.: Methodology to test and validate a VHDL inference engine through the Xilinx system generator. Soft Computing for Hybrid Intelligent Systems, pp. 325–331. Springer, Cham (2008)

    CrossRef  Google Scholar 

  47. Moreo, A.T., Lorente, P.N., Valles, F.S., Muro, J.S., Andres, C.F.: Experiences on developing computer vision hardware algorithms using Xilinx system generator. Microprocess. Microsyst. 29(8–9), 411–419 (2005)

    CrossRef  Google Scholar 

  48. Němcová, A., Smíšek, R., Maršánová, L., Smital, L., Vítek, M.: A comparative analysis of methods for evaluation of ECG signal quality after compression. Biomed Res. Int. 2018 (2018)

    Google Scholar 

  49. Zigel, Y., Cohen, A., Katz, A.: The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11), 1422–1430 (2000)

    CrossRef  Google Scholar 

  50. Blanco-Velasco, M., Cruz-Roldan, F., Godino-Llorente, J.I., Barner, K.E.: ECG compression with retrieved quality guaranteed. Electron. Lett. 40(23), 1466–1467 (2004)

    CrossRef  Google Scholar 

  51. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hasan Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, M.H., Cheung, R.C.C. (2021). Reconfigurable Computing and Hardware Acceleration in Health Informatics. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_9

Download citation