Skip to main content

Time-Frequency Analysis in Health Informatics

  • 286 Accesses

Part of the Intelligent Systems Reference Library book series (ISRL,volume 192)

Abstract

This chapter provides an introductory tutorial on time frequency analysis in health informatics. The chapter begins with basic nature of sampling, Z-transform, Fourier transform, wavelet as conceptual foundation of those are especially important in health informatics. Then we discuss about time-frequency resolutions, windowing, filtering, microphone arrays and transducer arrays, correlation analysis as basic understanding of these techniques are especially useful for health informatics. The last part of the chapter also addresses more advanced techniques and few examples. The chapter should come to be useful for those who consider these techniques for their applications.

Keywords

  • Signal processing
  • Filter
  • Fourier transform
  • Health informatics
  • Data analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-54932-9_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-54932-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

References

  1. Cerutti, S.: In the spotlight: biomedical signal processing. IEEE Rev. Biomed. Eng. 1 (2008)

    Google Scholar 

  2. Logier, R., Dassonneville, A., Delmar, G., Vasseur, C.: PhysioTrace: an efficient toolkit for biomedical signal processing. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005)

    Google Scholar 

  3. Carmel, S., Macy, A.J.: Physiological signal processing laboratory for biomedical engineering education. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005)

    Google Scholar 

  4. Li, Y., Zhao, D., Serdijn, W.A.: A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circ. Syst. 7(2), 149–157 (2013)

    CrossRef  Google Scholar 

  5. Varaleshmi, K., Venkatalakshmi, B.: Optimal FFT for wearable wireless medical devices. In: 2015 Global Conference on Communication Technologies (2015)

    Google Scholar 

  6. Tang, S.N., Jan, F.C., Cheng, H.W., Lin, C.K., Wu, G.Z.: Multimode memory-based FFT processor for wireless display FD-OCT medical systems. IEEE Trans. Circ. Syst. I Regul. Pap. 61(12), 3394–3406 (2014)

    CrossRef  Google Scholar 

  7. Taki, H., Taki, K., Sakamoto, T., Yamakawa, M., Shiina, T., Sato, T.: High range resolution medical acoustic vascular imaging with frequency domain interferometry. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (2010)

    Google Scholar 

  8. Riaz, F., Hassan, A., Nisar, R., Dinis-Ribeiro, M., Coimbra, M.T.: Content-adaptive region-based color texture descriptors for medical images. IEEE J. Biomed. Health Inf. 21(1), 162–171 (2015)

    CrossRef  Google Scholar 

  9. Nayak, J., Bhat, P.S., Acharya, R., Niranjan, U.C.: Simultaneous storage of medical images in the spatial and frequency domain: a comparative study. BioMed. Eng. OnLine 3(1), 17 (2004)

    CrossRef  Google Scholar 

  10. Cedillo-Hernandez, Manuel, Garcia-Ugalde, Francisco, Nakano-Miyatake, Mariko, Perez-Meana, Hector: Robust watermarking method in DFT domain for effective management of medical imaging. Sign. Image Video Process. 9, 1163–1178 (2015)

    CrossRef  Google Scholar 

  11. Sezan, M.I., Stark, H.: Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier inversion. IEEE Trans. Med. Imaging 3(2), 91–98 (1984)

    CrossRef  Google Scholar 

  12. Zhang, G., Ma, Z.M., Tong, Q., He, Y., Zhao, T.: Shape feature extraction using fourier descriptors with brightness in content-based medical image retrieval. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2008)

    Google Scholar 

  13. Ng, J., Prager, R., Kingsbury, N., Treece, G., Gee, A.: Wavelet restoration of medical pulse-echo ultrasound images in an EM framework. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(3), 550–568 (2007)

    CrossRef  Google Scholar 

  14. Serbes, G., Gulcur, H.O., Aydin, N.: Directional dual-tree rational-dilation complex wavelet transform. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014)

    Google Scholar 

  15. Boutry, C.M., Nguyen, A., Lawal, Q.O., Chortos, A., Rondeau-Gagné, S., Bao, Z.: A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mate. 27(43), 6954–6961 (2015)

    CrossRef  Google Scholar 

  16. Cikach Jr., F.S., Dweik, R.A.: Cardiovascular biomarkers in exhaled breath. Prog. Cardiovasc. Dise. 55(1), 34–43 (2012)

    CrossRef  Google Scholar 

  17. Song, J.K., Son, D., Kim, J., Yoo, Y.J., Lee, G.J., Wang, L., Choi, M.K., Yang, J., Lee, M., Do, K., Koo, J.H.: Wearable force touch sensor array using a flexible and transparent electrode. Adv. Funct. Mater. 27(6), 1605286 (2017)

    CrossRef  Google Scholar 

  18. Wei, H., Denga, Y., He, Y.: Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens. Bioelectr. 91, 15 (2017)

    CrossRef  Google Scholar 

  19. Xu, W., Chang, C., Hung, Y.S., Kwan, S.K., Fung, P.C.: Order statistics correlation coefficient as a novel association measurement with applications to biosignal analysis. IEEE Trans. Sign. Process. 55(12), 5552–5563 (2007)

    MathSciNet  CrossRef  Google Scholar 

  20. Gao, J., Hu, J., Tung, W.W.: Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. In: ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control (2011)

    Google Scholar 

  21. Maki, Y., Sano, G., Kobashi, Y., Nakamura, T., Kanoh, M., Yamada, K.: Estimating subjective assessments using a simple biosignal sensor. In: 2012 IEEE International Conference on Fuzzy Systems (2011)

    Google Scholar 

  22. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Math. Phys. Eng. Sci. 454(1971), 903–995 (1971)

    Google Scholar 

  23. Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Sign. Process. Lett. 11(2), 112–114 (2004)

    CrossRef  Google Scholar 

  24. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Sign. Process. 62(3), 531–544 (2014)

    MathSciNet  CrossRef  Google Scholar 

  25. Kaneko, I., Yoshida, Y., Yuda, E.. Improvements of the analysis of human activity using acceleration record of electronic cardiographs. Sign. Image Process. Int. J. (SIPIJ) 10(5) (2019)

    Google Scholar 

  26. Nishimura, R.A., Edwards, W.D., Warnes, C.A., Reeder, G.S., Holmes, D.R., Tajik, A.J., Yock, P.G.: Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J. Am. Coll. Cardiol. 16(1), 145–154 (1990)

    CrossRef  Google Scholar 

  27. Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Sign. Process. Maga. 13(4), 67–94 (1996)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kaneko, I. (2021). Time-Frequency Analysis in Health Informatics. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_3

Download citation