von Bartheld, C.S., Bahney, J., Herculano-Houzel, S.: The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524(18), 3865–3895 (2016)
CrossRef
Google Scholar
Duncan, J., Shorvon, S., Fish, D.: Clinical epilepsy. Curr. Opin. Neurol. Neurosurg. 5(2), 224–227 (1995)
Google Scholar
Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., Laxminarayan, R.: Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3), 464–474 (2016)
CrossRef
Google Scholar
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007 (2007)
Google Scholar
Päivinen, N., Lammi, S., Pitkänen, A., Nissinen, J., Penttonen, M., Grönfors, T.: Epileptic seizure detection: a nonlinear viewpoint. Comput. Methods Programs Biomed. (2005)
Google Scholar
Kobayashi, K., Jacobs, J., Gotman, J.: Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes. Clin. Neurophysiol. (2009)
Google Scholar
Guerrero-Mosquera, C., Trigueros, A.M., Franco, J.I., Navia-Vázquez, Á.: New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med. Biol. Eng. Comput. (2010)
Google Scholar
Samiee, K., Kovács, P., Gabbouj, M.: Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform. IEEE Trans. Biomed. Eng. (2015)
Google Scholar
Ambulkar, N.K., Sharma, S.N.: Detection of epileptic seizure in EEG signals using window width optimized S-transform and artificial neural networks. In: 2015 IEEE Bombay Section Symposium: Frontiers of Technology: Fuelling Prosperity of Planet and People, IBSS 2015 (2016)
Google Scholar
Sivasankari, K., Thanushkodi, K.: An improved EEG signal classification using neural network with the consequence of ICA and STFT. J. Electr. Eng. Technol. (2014)
Google Scholar
Yuan, Y., Jia, K., Xun, G., Zhang, A.: A multi-view deep learning method for epileptic seizure detection using short-time Fourier transform. In: ACM-BCB 2017—Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (2017)
Google Scholar
Xie, S., Krishnan, S.: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput. (2013)
Google Scholar
Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S.: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. (2012)
Google Scholar
Rajendra Acharya, U., Vinitha Sree, S., Alvin, A.P.C., Suri, J.S.: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst. Appl. 39(10), 9072–9078 (2012)
Google Scholar
Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image Video Process. (2014)
Google Scholar
Ahammad, N., Fathima, T., Joseph, P.: Detection of epileptic seizure event and onset using EEG. Biomed Res. Int. (2014)
Google Scholar
Sharmila, A., Aman Raj, S., Shashank, P., Mahalakshmi, P.: Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. J. Med. Eng. Technol. (2018)
Google Scholar
Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193(1), 156–163 (2010)
CrossRef
Google Scholar
Djemili, R., Bourouba, H., Amara Korba, M.C.: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals. Biocybern. Biomed. Eng. (2016)
Google Scholar
Kaleem, M., Guergachi, A., Krishnan, S.: EEG seizure detection and epilepsy diagnosis using a novel variation of empirical mode decomposition. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 4314–4317 (2013)
Google Scholar
Fu, K., Qu, J., Chai, Y., Zou, T.: Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed. Signal Process. Control 18, 179–185 (2015)
CrossRef
Google Scholar
Wang, L., et al.: Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6), 1–17 (2017)
Google Scholar
Wang, Y., Li, Z., Feng, L., Zheng, C., Zhang, W.: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification. Comput. Math. Methods Med. 2017 (2017)
Google Scholar
Ahmed, M.U.: Complexity analysis of brain electrical activity 2(11), 146–152 (2013)
Google Scholar
Kumar, T.S., Kanhangad, V., Pachori, R.B.: Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed. Signal Process. Control 15, 33–40 (2015)
CrossRef
Google Scholar
Sharma, M., Pachori, R.B., Rajendra Acharya, U.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 94, 172–179 (2017)
Google Scholar
Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K.: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J. Biomed. Heal. Informatics 21(4), 888–896 (2017)
CrossRef
Google Scholar
Bhattacharyya, A., Singh, L., Pachori, R.B.: Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. A Rev. J. 78(Vmd), 185–196 (2018)
Google Scholar
Gupta, V., Pachori, R.B.: Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed. Signal Process. Control 53, 101569 (2019)
CrossRef
Google Scholar
Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64(9), 2003–2015 (2017)
CrossRef
Google Scholar
Ullah, I., Hussain, M., Qazi, E., Aboalsamh, H.: An automated system for epilepsy detection using EEG brain signals based on deep learning approach insight centre for data analytics, national university of Ireland, Galway, Ireland visual computing lab, department of computer science, college of Com. Expert Syst. Appl. 107, 61–71 (2018)
CrossRef
Google Scholar
Hussein, R., Palangi, H., Ward, R., Wang, Z.J.: Epileptic seizure detection: a deep learning approach 1–12 (2018)
Google Scholar
Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)
CrossRef
Google Scholar
Zhou, M., et al.: Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 12 (2018)
Google Scholar
Emami, A., Kunii, N., Matsuo, T., Shinozaki, T., Kawai, K., Takahashi, H.: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuro. Image Clin. 22, 101684, May 2018 (2019)
Google Scholar
Birjandtalab, J., Heydarzadeh, M., Nourani, M.: Automated EEG-based epileptic seizure detection using deep neural networks. In: Proceedings of 2017 IEEE International Conference on Healthcare Informatics (ICHI) 2017(1), 552–555 (2017)
Google Scholar
Wei, X., Zhou, L., Chen, Z., Zhang, L., Zhou, Y.: Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Med. Inform. Decis. Mak. (2018)
Google Scholar
Shamim Hossain, M., Amin, S.U., Alsulaiman, M., Muhammad, G.: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans. Multimed. Comput. Commun. Appl. (2019)
Google Scholar
Lin, C., Hsin, Y.U.E.L.: The nonlinear and nonstationary properties in EEG signals : probing the complex fluctuations 1(3), 461–482 (2009)
Google Scholar
Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)
CrossRef
Google Scholar
Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity : dependence on recording region and brain state 64, 1–8 (2001)
Google Scholar
Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)
Google Scholar
Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl. Based Syst. 88, 85–96 (2015)
CrossRef
Google Scholar
Kumar, N., Alam, K., Hasan Siddiqi, A.: Wavelet transform for classification of EEG signal using SVM and ANN. Biomed. Pharmacol. J. 10(4), 2061–2069 (December, 2017)
Google Scholar
Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)
Google Scholar
Gonzalez, R.C., Woods, R.E.: Digital Image Processing (3rd edn.) (2007)
Google Scholar
Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)
CrossRef
Google Scholar
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 71(2), 1–18 (2005)
Google Scholar
Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 1, 137–140 (2002)
CrossRef
Google Scholar
Bhatia, P.K., Sharma, A.: Epilepsy seizure detection using wavelet support vector machine classifier. Int. J. Bio-Science Bio-Technology 8(2), 11–22 (2016)
CrossRef
Google Scholar
AnarYegnayana, B.: Artificial Neural Networks. Prentice-Hall of India Pvt, Ltd (2004)
Google Scholar
Nielsen, M.A.: Neural networks and deep learning, vol. 25. Determination press USA (2015)
Google Scholar
Shoeb, A.: Application of machine learning to epileptic seizure onset detection and treatment. PhD Thesis, Massachusetts Institute of Technology (September, 2009)
Google Scholar