Skip to main content

Automatic Epileptic Seizures Detection and EEG Signals Classification Based on Multi-domain Feature Extraction and Multiscale Entropy Analysis

  • 273 Accesses

Part of the Intelligent Systems Reference Library book series (ISRL,volume 192)

Abstract

Epilepsy is a frequently observed neurological abnormality. In the manual method, a physician monitors the recording of Electroencephalogram (EEG) of a patient to detect epileptic seizures. But this method is time-consuming and fallible. This chapter presents an automatic epileptic seizures detection and EEG signals classification method based on multi-domain feature extraction and multiscale entropy analysis. In this method, EEG data is collected and preprocessed for artifacts removal from the original data. Then discrete Fourier transform (DFT) and discrete wavelet transform (DWT) are applied for extracting features. Multiscale entropy (MSE) with sample entropy is also applied to extract nonlinear features. Finally, supervised learning classifiers such as support vector machine (SVM), k-nearest-neighbors (k-NN) and artificial neural network (ANN) are used for epileptic seizures detection, three-class and five-class classification of the EEG signals. The dataset has been collected from the University of Bonn. This method attained an accuracy of 99.54%, sensitivity of 98.56% and specificity of 99.76% for epileptic seizures detection. For three-class and five-class classification, accuracy was 98.22% and 87.00%, respectively.

Keywords

  • Epilepsy
  • EEG
  • Discrete wavelet transform
  • Multiscale entropy
  • Support vector machine
  • Artificial neural networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-54932-9_14
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-54932-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5

References

  1. von Bartheld, C.S., Bahney, J., Herculano-Houzel, S.: The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524(18), 3865–3895 (2016)

    CrossRef  Google Scholar 

  2. Duncan, J., Shorvon, S., Fish, D.: Clinical epilepsy. Curr. Opin. Neurol. Neurosurg. 5(2), 224–227 (1995)

    Google Scholar 

  3. Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., Laxminarayan, R.: Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3), 464–474 (2016)

    CrossRef  Google Scholar 

  4. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007 (2007)

    Google Scholar 

  5. Päivinen, N., Lammi, S., Pitkänen, A., Nissinen, J., Penttonen, M., Grönfors, T.: Epileptic seizure detection: a nonlinear viewpoint. Comput. Methods Programs Biomed. (2005)

    Google Scholar 

  6. Kobayashi, K., Jacobs, J., Gotman, J.: Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes. Clin. Neurophysiol. (2009)

    Google Scholar 

  7. Guerrero-Mosquera, C., Trigueros, A.M., Franco, J.I., Navia-Vázquez, Á.: New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med. Biol. Eng. Comput. (2010)

    Google Scholar 

  8. Samiee, K., Kovács, P., Gabbouj, M.: Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform. IEEE Trans. Biomed. Eng. (2015)

    Google Scholar 

  9. Ambulkar, N.K., Sharma, S.N.: Detection of epileptic seizure in EEG signals using window width optimized S-transform and artificial neural networks. In: 2015 IEEE Bombay Section Symposium: Frontiers of Technology: Fuelling Prosperity of Planet and People, IBSS 2015 (2016)

    Google Scholar 

  10. Sivasankari, K., Thanushkodi, K.: An improved EEG signal classification using neural network with the consequence of ICA and STFT. J. Electr. Eng. Technol. (2014)

    Google Scholar 

  11. Yuan, Y., Jia, K., Xun, G., Zhang, A.: A multi-view deep learning method for epileptic seizure detection using short-time Fourier transform. In: ACM-BCB 2017—Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (2017)

    Google Scholar 

  12. Xie, S., Krishnan, S.: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput. (2013)

    Google Scholar 

  13. Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S.: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. (2012)

    Google Scholar 

  14. Rajendra Acharya, U., Vinitha Sree, S., Alvin, A.P.C., Suri, J.S.: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst. Appl. 39(10), 9072–9078 (2012)

    Google Scholar 

  15. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image Video Process. (2014)

    Google Scholar 

  16. Ahammad, N., Fathima, T., Joseph, P.: Detection of epileptic seizure event and onset using EEG. Biomed Res. Int. (2014)

    Google Scholar 

  17. Sharmila, A., Aman Raj, S., Shashank, P., Mahalakshmi, P.: Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. J. Med. Eng. Technol. (2018)

    Google Scholar 

  18. Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193(1), 156–163 (2010)

    CrossRef  Google Scholar 

  19. Djemili, R., Bourouba, H., Amara Korba, M.C.: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals. Biocybern. Biomed. Eng. (2016)

    Google Scholar 

  20. Kaleem, M., Guergachi, A., Krishnan, S.: EEG seizure detection and epilepsy diagnosis using a novel variation of empirical mode decomposition. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 4314–4317 (2013)

    Google Scholar 

  21. Fu, K., Qu, J., Chai, Y., Zou, T.: Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed. Signal Process. Control 18, 179–185 (2015)

    CrossRef  Google Scholar 

  22. Wang, L., et al.: Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6), 1–17 (2017)

    Google Scholar 

  23. Wang, Y., Li, Z., Feng, L., Zheng, C., Zhang, W.: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification. Comput. Math. Methods Med. 2017 (2017)

    Google Scholar 

  24. Ahmed, M.U.: Complexity analysis of brain electrical activity 2(11), 146–152 (2013)

    Google Scholar 

  25. Kumar, T.S., Kanhangad, V., Pachori, R.B.: Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed. Signal Process. Control 15, 33–40 (2015)

    CrossRef  Google Scholar 

  26. Sharma, M., Pachori, R.B., Rajendra Acharya, U.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 94, 172–179 (2017)

    Google Scholar 

  27. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K.: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J. Biomed. Heal. Informatics 21(4), 888–896 (2017)

    CrossRef  Google Scholar 

  28. Bhattacharyya, A., Singh, L., Pachori, R.B.: Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. A Rev. J. 78(Vmd), 185–196 (2018)

    Google Scholar 

  29. Gupta, V., Pachori, R.B.: Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed. Signal Process. Control 53, 101569 (2019)

    CrossRef  Google Scholar 

  30. Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64(9), 2003–2015 (2017)

    CrossRef  Google Scholar 

  31. Ullah, I., Hussain, M., Qazi, E., Aboalsamh, H.: An automated system for epilepsy detection using EEG brain signals based on deep learning approach insight centre for data analytics, national university of Ireland, Galway, Ireland visual computing lab, department of computer science, college of Com. Expert Syst. Appl. 107, 61–71 (2018)

    CrossRef  Google Scholar 

  32. Hussein, R., Palangi, H., Ward, R., Wang, Z.J.: Epileptic seizure detection: a deep learning approach 1–12 (2018)

    Google Scholar 

  33. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)

    CrossRef  Google Scholar 

  34. Zhou, M., et al.: Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 12 (2018)

    Google Scholar 

  35. Emami, A., Kunii, N., Matsuo, T., Shinozaki, T., Kawai, K., Takahashi, H.: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuro. Image Clin. 22, 101684, May 2018 (2019)

    Google Scholar 

  36. Birjandtalab, J., Heydarzadeh, M., Nourani, M.: Automated EEG-based epileptic seizure detection using deep neural networks. In: Proceedings of 2017 IEEE International Conference on Healthcare Informatics (ICHI) 2017(1), 552–555 (2017)

    Google Scholar 

  37. Wei, X., Zhou, L., Chen, Z., Zhang, L., Zhou, Y.: Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Med. Inform. Decis. Mak. (2018)

    Google Scholar 

  38. Shamim Hossain, M., Amin, S.U., Alsulaiman, M., Muhammad, G.: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans. Multimed. Comput. Commun. Appl. (2019)

    Google Scholar 

  39. Lin, C., Hsin, Y.U.E.L.: The nonlinear and nonstationary properties in EEG signals : probing the complex fluctuations 1(3), 461–482 (2009)

    Google Scholar 

  40. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    CrossRef  Google Scholar 

  41. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity : dependence on recording region and brain state 64, 1–8 (2001)

    Google Scholar 

  42. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  43. Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl. Based Syst. 88, 85–96 (2015)

    CrossRef  Google Scholar 

  44. Kumar, N., Alam, K., Hasan Siddiqi, A.: Wavelet transform for classification of EEG signal using SVM and ANN. Biomed. Pharmacol. J. 10(4), 2061–2069 (December, 2017)

    Google Scholar 

  45. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    Google Scholar 

  46. Gonzalez, R.C., Woods, R.E.: Digital Image Processing (3rd edn.) (2007)

    Google Scholar 

  47. Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    CrossRef  Google Scholar 

  48. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 71(2), 1–18 (2005)

    Google Scholar 

  49. Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 1, 137–140 (2002)

    CrossRef  Google Scholar 

  50. Bhatia, P.K., Sharma, A.: Epilepsy seizure detection using wavelet support vector machine classifier. Int. J. Bio-Science Bio-Technology 8(2), 11–22 (2016)

    CrossRef  Google Scholar 

  51. AnarYegnayana, B.: Artificial Neural Networks. Prentice-Hall of India Pvt, Ltd (2004)

    Google Scholar 

  52. Nielsen, M.A.: Neural networks and deep learning, vol. 25. Determination press USA (2015)

    Google Scholar 

  53. Shoeb, A.: Application of machine learning to epileptic seizure onset detection and treatment. PhD Thesis, Massachusetts Institute of Technology (September, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abu Sayem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abu Sayem, M., Sohel Rana Sarker, M., Ahad, M.A.R., Ahmed, M.U. (2021). Automatic Epileptic Seizures Detection and EEG Signals Classification Based on Multi-domain Feature Extraction and Multiscale Entropy Analysis. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_14

Download citation