Skip to main content

Risk Prediction with Machine Learning in Cesarean Section: Optimizing Healthcare Operational Decisions

Part of the Intelligent Systems Reference Library book series (ISRL,volume 192)

Abstract

In recent years, data mining is becoming very popular in healthcare and medical research. With its enormous library and a large number of machine learning (ML) algorithms, it is being used for the complex, multidimensional and large data in healthcare systems. Cesarean section or C-section is the widely used method when any abnormality affects the normal birth of a child. The aim of this research is to identify the cesarean section of child birth by considering some important situations of pregnant women using different ML algorithms. In this situation, several data imbalanced techniques were implemented in the cesarean data. Then, various classifiers were applied to the derived balanced and base cesarean sample. After applying ML classifiers, we have received a success rate over 95%.

Keywords

  • C-Section
  • ML
  • Oversampling
  • Classifiers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-54932-9_13
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-54932-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4

References

  1. Bradley, D., Landau, E., Wolfberg, A., Baron, A.: Predicting obstetric disease with machine learning applied to patient-reported data. J. Med. Internet Res. 20(9) (2018)

    Google Scholar 

  2. Romeo, V., Ricciardi, C., Cuocolo, R., Stanzione, A., Verde, F., Sarno, L., Maurea, S.: Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa. Magn. Reson. Imaging (2019)

    Google Scholar 

  3. Amin, M., Ali, A.: Performance Evaluation of Supervised Machine Learning Classifiers for Predicting Healthcare Operational Decisions. Wavy AI Research Foundation, Lahore, Pakistan (2018)

    Google Scholar 

  4. Polat, K.: A hybrid approach to parkinson disease classification using speech signal: the combination of SMOTE and random forests. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), pp. 1–3. IEEE (2019)

    Google Scholar 

  5. Lakhani, P., Prater, A.B., Hutson, R.K., Andriole, K.P., Dreyer, K.J., Morey, J., Prevedello, L.M., Clark, T.J., Geis, J.R., Itri, J.N., Hawkins, C.M.: Machine learning in radiology: applications beyond image interpretation. J. Am. Coll. Radiol. 15(2), 350–359 (2018)

    CrossRef  Google Scholar 

  6. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018. IEEE (2014)

    Google Scholar 

  7. Lama, R.K., Gwak, J., Park, J.S., Lee, S.W.: Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. J. Healthcare Eng. (2017)

    Google Scholar 

  8. Gharehchopogh, F.S., Mohammadi, P., Hakimi, P.: Application of decision tree algorithm for data mining in healthcare operations: a case study. Int. J. Comput. Appl. 52(6), 326–337 (2012)

    Google Scholar 

  9. Caruana, R., Niculescu, R.S., Rao, R.B., Simms, C.: Machine learning for sub-population assessment: evaluating the C-section rate of different physician practices. In Proceedings of the AMIA Symposium, p. 126. American Medical Informatics Association (2002)

    Google Scholar 

  10. Stylios, C.D., Georgoulas, G., Groumpos, P.P.: The challenge of using soft computing for decision support during labour. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3835–3838. IEEE (2001)

    Google Scholar 

  11. Vovsha, I., Rajan, A., Salleb-Aouissi, A., Raja, A., Radeva, A., Diab, H., Tomar, A., Wapner, R.: Predicting preterm birth is not elusive: machine learning paves the way to individual wellness. In 2014 AAAI Spring Symposium Series (2014)

    Google Scholar 

  12. Maroufizadeh, S., Amini, P., Hosseini, M., Almasi-Hashiani, A., Mohammadi, M., Navid, B., Omani-Samani, R.: Determinants of cesarean section among primiparas: a comparison of classification methods. Iran. J. Public Health 47(12), 1913 (2018)

    Google Scholar 

  13. Manzanares, S., Ruiz-Duran, S., Pinto, A., Pineda, A., Puertas, A.: An integrated model with classification criteria to predict vaginal delivery success after cesarean section. J. Maternal-Fetal Neonatal Med. 1–7 (2018)

    Google Scholar 

  14. Iftitah, E.N., Rulaningtyas, R.: The baby delivery method estimation using Naïve Bayes classification model for mobile application. J. Phys.: Conf. Ser. 1120(1), 012049 (2018) (IOP Publishing)

    Google Scholar 

  15. Lee, E. K., Tian, H., Wei, X., Lee, J., Smith, K. D., Neeld, J., Kaplan, A.R.: Factors influencing epidural anesthesia for cesarean section outcome. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1062–1069. IEEE (2018)

    Google Scholar 

  16. Lee, K.S., Ahn, K.H.: Spontaneous preterm labor and birth and its major determinants: artificial neural network analysis of general hospital data. J. Korean Med. Sci. 34(16), 134–147 (2019)

    CrossRef  Google Scholar 

  17. Saleem, S., Naqvi, S.S., Manzoor, T., Saeed, A., Mirza, J.: A strategy for classification of vaginal versus cesarean section’ delivery: bivariate empirical mode decomposition of cardiotocographic recordings. Front. Physiol. 10, 246–257 (2019)

    CrossRef  Google Scholar 

  18. Yap, B.W., Rani, K.A., Rahman, H.A.A., Fong, S., Khairudin, Z., Abdullah, N.N.: An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data And Information Engineering (DaEng-2013), pp. 13–22. Springer, Singapore (2014)

    Google Scholar 

  19. Gao, R., Peng, J., Nguyen, L., Liang, Y., Thng, S., Lin, Z. Classification of non-tumorous facial pigmentation disorders using deep learning and SMOTE. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Zhang, J., Chen, L.: Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis. Comput. Assis. Surg. 1–11 (2019)

    Google Scholar 

  21. Akter, T., Satu, M.S., Khan, M.I., Ali, M.H., Uddin, S., Lió, P., Quinn, J.M., Moni, M.A.: Machine learning-based models for early stage detection of autism spectrum disorders. IEEE Access 7, 166509–166527 (2019)

    CrossRef  Google Scholar 

  22. Eftekhar, H., Hossain, M.F., Rahaman, M.A: A Color and texture based approach for the detection and classification of plant leaf disease using KNN classifier. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE (2019)

    Google Scholar 

  23. Satu, M.S., Ahamed, S., Hossain, F., Akter, T., Farid, D.M.: Mining traffic accident data of N5 national highway in Bangladesh employing decision trees. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 722–725. IEEE (2017)

    Google Scholar 

  24. Abedin, M.Z., Guotai, C., Moula, F E.: Weighted SMOTE-ensemble algorithms: Evidence from Chinese imbalance credit approval instances. In: Proceedings of IEEE Xplore: The 2nd International Conference on Data Intelligence and Security, 28–30 June 2019, South Padre Island, Texas, USA, pp. 208–211 (2019). https://doi.org/10.1109/icdis.2019.00038

  25. Moula, F.E., Guotai, C., Abedin, M.Z.: Credit default prediction modeling: application of support vector machine. Risk Manage. 19(2), 158–187 (2017)

    CrossRef  Google Scholar 

  26. Satu, M.S., Sathi, F.F., Arifen, M.S., Ali, M.H., Moni, M.A.: Early detection of autism by extracting features: a case study in Bangladesh. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 400–405. IEEE (2019)

    Google Scholar 

  27. Xie, Y., Jiang, B., Gong, E., Li, Y., Zhu, G., Michel, P., Zaharchuk, G.: Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. Am. J. Roentgenol. 212(1), 44–51 (2019)

    CrossRef  Google Scholar 

  28. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  29. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018)

    CrossRef  Google Scholar 

  30. Abedin, M.Z., Guotai, C., Colombage, S., Moula, F.E.: Credit default prediction by using a support vector machine and a probabilistic neural network. J. Credit Risk 14(2), 1–27 (2018)

    Google Scholar 

  31. Maji, S., Arora, S.: Decision tree algorithms for prediction of heart disease. In Information and Communication Technology for Competitive Strategies, pp. 447–454. Springer, Singapore (2019)

    Google Scholar 

  32. Sridharan, K., Komarasamy, G.: Sentiment classification using harmony random forest and harmony gradient boosting machine. Soft Comput. 1–8 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zoynul Abedin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, S., Khan, M.I., Satu, M.S., Abedin, M.Z. (2021). Risk Prediction with Machine Learning in Cesarean Section: Optimizing Healthcare Operational Decisions. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_13

Download citation