Skip to main content

Artificial Intelligence, Machine Learning and Reasoning in Health Informatics—Case Studies

  • Chapter
  • First Online:
Book cover Signal Processing Techniques for Computational Health Informatics

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 192))

Abstract

To apply Artificial Intelligence (AI), Machine Learning (ML) and Machine Reasoning (MR) in health informatics are often challenging as they comprise with multivariate information coming from heterogeneous sources e.g. sensor signals, text, etc. This book chapter presents the research development of AI, ML and MR as applications in health informatics. Five case studies on health informatics have been discussed and presented as (1) advanced Parkinson’s disease, (2) stress management, (3) postoperative pain treatment, (4) driver monitoring, and (5) remote health monitoring. Here, the challenges, solutions, models, results, limitations are discussed with future wishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ecareathome.se/.

  2. 2.

    http://www.es.mdh.se/projects/324-ESS_H___Embedded_Sensor_Systems_for_Health_Research_Profile.

References

  1. Buchanan, B., Shortliffe, E.: Rule-based expert system. The MYCIN Experiments of the Stanford Heuristic Programming Project (1984)

    Google Scholar 

  2. Gardner, R.M., Pryor, T.A., Warner, H.R.: The HELP hospital information system: update 1998. Int. J. Med. Informatics 54(3), 169–182 (1999). https://doi.org/10.1016/S1386-5056(99)00013-1

    Article  Google Scholar 

  3. Kong, G., Xu, D.-L., Yang, J.-B.: Clinical decision support systems: a review on knowledge representation and inference under uncertainties. In. J. Comput. Intell. Syst. 1(2), 159–167 (2008). https://doi.org/10.1080/18756891.2008.9727613

    Article  Google Scholar 

  4. Ahmed, M., Westin, J., Nyholm, D., Dougherty, M., Groth, T.: A fuzzy rule-based decision support system for Duodopa treatment in Parkinson. In: 23rd Annual Workshop of the Swedish Artificial Intelligence Society, Umeå, May, 2006 (2006)

    Google Scholar 

  5. Alayón, S., Robertson, R., Warfield, S.K., Ruiz-Alzola, J.: A fuzzy system for helping medical diagnosis of malformations of cortical development. J. Biomed. Inform. 40(3), 221–235 (2007). https://doi.org/10.1016/j.jbi.2006.11.002

    Article  Google Scholar 

  6. Casas, F., Orozco, A., Smith, W.A., De Abreu-Garcı́a, J.A., Durkin, J.: A fuzzy system cardio pulmonary bypass rotary blood pump controller. Expert Syst. Appl. 26(3), 357–361 (2004). https://doi.org/10.1016/j.eswa.2003.09.006

    Article  Google Scholar 

  7. Lindgaard, G.: Intelligent decision support in medicine: back to bayes? In: Proceedings of the 14th European conference on Cognitive Ergonomics: Invent! Explore!, pp. 7–8. ACM (2007)

    Google Scholar 

  8. Kahn, C.E., Roberts, L.M., Shaffer, K.A., Haddawy, P.: Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput. Biol. Med. 27(1), 19–29 (1997). https://doi.org/10.1016/S0010-4825(96)00039-X

    Article  Google Scholar 

  9. Podgorelec, V., Kokol, P., Zavrsnik, J.: Medical diagnosis prediction using genetic programming. In: Proceedings 12th IEEE Symposium on Computer-Based Medical Systems (Cat. No. 99CB36365), 18–20 June 1999, pp. 202–207 (1999). https://doi.org/10.1109/cbms.1999.781271

  10. Paz, J.F.D., Rodríguez, S., Bajo, J., Corchado, J.M.: Case-based reasoning as a decision support system for cancer diagnosis: A case study. Int. J. Hybrid. Intell. Syst. 6(2), 97–110 (2009)

    Article  Google Scholar 

  11. Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: improving healthcare delivery in geriatric residences. IEEE Intell. Syst. 23(2), 19–25 (2008). https://doi.org/10.1109/MIS.2008.27

    Article  Google Scholar 

  12. Díaz, F., Fdez-Riverola, F., Corchado, J.M.: gene-CBR: a case-based reasonig tool for cancer diagnosis using microarray data sets. Comput. Intell. 22(3–4), 254–268 (2006). https://doi.org/10.1111/j.1467-8640.2006.00287.x

    Article  Google Scholar 

  13. Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinf. 10(1), 187 (2009). https://doi.org/10.1186/1471-2105-10-187

    Article  Google Scholar 

  14. Schmidt, R., Vorobieva, O.: Case-based reasoning investigation of therapy inefficacy. In: Applications and Innovations in Intelligent Systems XIII, pp. 13–25. Springer London (2006)

    Google Scholar 

  15. D’Aquin, M., Lieber, J., Napoli, A.: Adaptation knowledge acquisition: a case study for case-based decision support in oncology. Comput. Intell. 22(3–4), 161–176 (2006). https://doi.org/10.1111/j.1467-8640.2006.00281.x

    Article  MathSciNet  Google Scholar 

  16. Song, X., Petrovic, S., Sundar, S.: A Case-based reasoning approach to dose planning in Radiotherapy (2007)

    Google Scholar 

  17. Marling, C., Shubrook, J., Schwartz, F.: Case-based decision support for patients with type 1 diabetes on insulin pump therapy. In: Advances in Case-Based Reasoning, pp 325–339. Springer Berlin Heidelberg (2008)

    Google Scholar 

  18. Maetzler, W., Klucken, J., Horne, M.: A clinical view on the development of technology-based tools in managing Parkinson’s disease. Mov. Disord. 31(9), 1263–1271 (2016). https://doi.org/10.1002/mds.26673

    Article  Google Scholar 

  19. Espay, A.J., Bonato, P., Nahab, F.B., Maetzler, W., Dean, J.M., Klucken, J., Eskofier, B.M., Merola, A., Horak, F., Lang, A.E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne, M., Little, M.A., Litvan, I., Simuni, T., Dorsey, E.R., Burack, M.A., Kubota, K., Kamondi, A., Godinho, C., Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J.M., Bloem, B.R., Papapetropoulos, S., Technology obotMDSTFo: Technology in Parkinson’s disease: challenges and opportunities. Mov. Disord. 31(9), 272–1282 (2016). https://doi.org/10.1002/mds.26642

    Article  Google Scholar 

  20. Giuffrida, J.P., Riley, D.E., Maddux, B.N., Heldman, D.A.: Clinically deployable Kinesia™ technology for automated tremor assessment. Mov. Disord. 24(5), 723–730 (2009). https://doi.org/10.1002/mds.22445

    Article  Google Scholar 

  21. Griffiths, R.I., Kotschet, K., Arfon, S., Xu, Z.M., Johnson, W., Drago, J., Evans, A., Kempster, P., Raghav, S., Horne, M.K.: Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J. Parkinson’s Dis. 2(1), 47–55 (2012)

    Article  Google Scholar 

  22. Bonato, P., Sherrill, D.M., Standaert, D.G., Salles, S.S., Akay, M.: Data mining techniques to detect motor fluctuations in Parkinson’s disease. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–5 Sept 2004, pp. 4766–4769 (2004). https://doi.org/10.1109/iembs.2004.1404319

  23. Gil, D., Johnson, M.: Diagnosing Parkinson by using artificial neural networks and support vector machines. 9 (2009)

    Google Scholar 

  24. Soleimanian Gharehchopogh, F., Mohammadi, P.: A case study of Parkinson’s disease diagnosis using artificial neural networks. Int. J. Comput. Appl. 73, 1–6 (2013). https://doi.org/10.5120/12990-9206

    Article  Google Scholar 

  25. Pereira, L.A.M., Rodrigues, D., Ribeiro, P.B., Papa, J.P., Weber SAT social-spider optimization-based artificial neural networks training and its applications for Parkinson’s disease identification. In: 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, 27–29 May 2014, pp. 14–17 (2014). https://doi.org/10.1109/cbms.2014.25

  26. Geman, O.: A fuzzy expert systems design for diagnosis of Parkinson’s disease. In: 2011 E-Health and Bioengineering Conference (EHB), 24–26 Nov. 2011, pp. 1–4 (2011)

    Google Scholar 

  27. Eskofier, B.M., Lee, S.I., Daneault, J., Golabchi, F.N., Ferreira-Carvalho, G., Vergara-Diaz, G., Sapienza, S., Costante, G., Klucken, J., Kautz, T., Bonato, P.: Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson’s disease assessment. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16–20 Aug 2016, pp. 655–658 (2016). https://doi.org/10.1109/embc.2016.7590787

  28. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010). https://doi.org/10.1109/TBME.2009.2036000

    Article  Google Scholar 

  29. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009). https://doi.org/10.1109/TITB.2009.2033471

    Article  Google Scholar 

  30. Nancy Jane, Y., Khanna Nehemiah, H., Arputharaj, K.: A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson’s disease. J. Biomed. Inform. 60, 169–176 (2016). https://doi.org/10.1016/j.jbi.2016.01.014

    Article  Google Scholar 

  31. Lopane, G., Mellone, S., Chiari, L., Cortelli, P., Calandra-Buonaura, G., Contin, M.: Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease. Mov. Disord. 30(9), 1267–1271 (2015). https://doi.org/10.1002/mds.26313

    Article  Google Scholar 

  32. Selye, H.: The Stress of Life. McGraw-Hill, New York, NY, US (1956)

    Google Scholar 

  33. Won, E., Kim, Y.-K.: Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr. Neuropharmacol. 14(7), 665–673 (2016). https://doi.org/10.2174/1570159x14666151208113006

    Article  Google Scholar 

  34. Guan, L., Collet, J.-P., Mazowita, G., Claydon, V.E.: Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Front. Neurol. 9(90) (2018). https://doi.org/10.3389/fneur.2018.00090

  35. Landis, C., Cannon, W.B.: Bodily Changes in Pain, Hunger, Fear and Rage, 2nd ed., revised and enlarged., pp. xvi + 404. Appleton, New York, 1929 (1930). Pedagogical Sem. J. Genet. Psychol. 38(1–4), 527–531. https://doi.org/10.1080/08856559.1930.10532290

  36. Noble, R.E.: Diagnosis of stress. Metabol. Clin. Exp. 51(6), 37–39 (2002). https://doi.org/10.1053/meta.2002.33190

    Article  Google Scholar 

  37. Begum, S., Ahmed, M.U., Schéele, B., Olsson, E., Funk, P.: Development of a stress questionnaire: a tool for diagnosing mental stress. Technical Report, MRTC (2010)

    Google Scholar 

  38. Cohen, S., Kessler, R.C., Gordon, L.U.: Measuring stress: A Guide for Health and Social Scientists. Oxford University Press on Demand (1997)

    Google Scholar 

  39. Perner, P.: An architecture for a CBR image segmentation system. Eng. Appl. Artif. Intell. 12(6), 749–759 (1999). https://doi.org/10.1016/S0952-1976(99)00038-X

    Article  Google Scholar 

  40. Begum, S., Ahmed, M.U., Funk, P., Xiong, N., Von Schéele, B.: A case-based decision support system for individual stress diagnosis using fuzzy Y similarity matching. Computational Intelligence 25(3), 180–195 (2009). https://doi.org/10.1111/j.1467-8640.2009.00337.x

    Article  MathSciNet  Google Scholar 

  41. Begum, S., Ahmed, M.U., Funk, P.: ECG sensor signal analysis to represent cases in a case-based stress diagnosis system. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, 3–5 Nov 2010, pp. 1–5 (2010). https://doi.org/10.1109/itab.2010.5687657

  42. Hawthorn, J., Redmond, K.: Pain: causes and management. J. Psychiatr. Ment. Health Nurs. 6(5), 409–410 (1999). https://doi.org/10.1046/j.1365-2850.1999.00227-8.x

    Article  Google Scholar 

  43. Crawford Clark, W., Yang, J.C., Tsui, S.-L., Ng, K.-F., Bennett Clark, S.: Unidimensional pain rating scales: a multidimensional affect and pain survey (MAPS) analysis of what they really measure. Pain 98(3), 241–247 (2002). https://doi.org/10.1016/S0304-3959(01)00474-2

    Article  Google Scholar 

  44. Kumar, S., Tandon, O., Mathur, R.: Pain measurement: a formidable task. Ind. J. Physiol. Pharmacol. 46(4), 396–406 (2002)

    Google Scholar 

  45. Rothaug, J., Zaslansky, R., Schwenkglenks, M., Komann, M., Allvin, R., Backström, R., Brill, S., Buchholz, I., Engel, C., Fletcher, D., Fodor, L., Funk, P., Gerbershagen, H.J., Gordon, D.B., Konrad, C., Kopf, A., Leykin, Y., Pogatzki-Zahn, E., Puig, M., Rawal, N., Taylor, R.S., Ullrich, K., Volk, T., Yahiaoui-Doktor, M., Meissner, W.: Patients’ perception of postoperative pain management: validation of the international pain outcomes (IPO) questionnaire. J. Pain 14(11), 1361–1370 (2013). https://doi.org/10.1016/j.jpain.2013.05.016

    Article  Google Scholar 

  46. Jose, D., Fischer, H., Ivani, G., Mogensen, T., Narchi, P., Singelyn, F., Stienstr, R., Wulf, H.: Postoperative pain management—good clinical practice. European Society of Regional Anaesthesia and Pain therapy (2011)

    Google Scholar 

  47. Smith, M.Y., DePue, J.D., Rini, C.: Computerized decision-support systems for chronic pain management in primary care. Pain Med. 8(suppl_3), S155–S166 (2007). https://doi.org/10.1111/j.1526-4637.2007.00278.x

  48. Bertsche, T., Askoxylakis, V., Habl, G., Laidig, F., Kaltschmidt, J., Schmitt, S.P.W., Ghaderi, H., Bois, A.Z.-d., Milker-Zabel, S., Debus, J., Bardenheuer, H.J., Haefeli, W.E.: Multidisciplinary pain management based on a computerized clinical decision support system in cancer pain patients. PAIN® 147(1), 20–28 (2009). https://doi.org/10.1016/j.pain.2009.07.009

  49. Houeland, T.G., Aamodt, A.: Towards an introspective architecture for meta-level reasoning in clinical decision support systems. In: Proceedings of the Workshop on CBR in the Health Sciences, 8th International Conference on Case-Based Reasoning, pp. 235–244 (2009)

    Google Scholar 

  50. Elvidge, K.: Improving pain & symptom management for advanced cancer patients with a clinical decision support system. Stud. Health Technol. Inf. 136, 169–174 (2008). https://doi.org/10.3233/978-1-58603-864-9-169

    Article  Google Scholar 

  51. Jacobé de Naurois, C., Bourdin, C., Stratulat, A., Diaz, E., Vercher, J.-L.: Detection and prediction of driver drowsiness using artificial neural network models. Accid. Anal. Prev. (2017). https://doi.org/10.1016/j.aap.2017.11.038

    Article  Google Scholar 

  52. Wang, X., Xu, C.: Driver drowsiness detection based on non-intrusive metrics considering individual specifics. Acc. Anal. Prevent. 95(Part B), 350–357 (2016). doi:https://doi.org/10.1016/j.aap.2015.09.002

  53. Balandong, R.P., Ahmad, R.F., Saad, M.N.M., Malik, A.S.: A review on EEG-based automatic sleepiness detection systems for driver. IEEE Access 6, 22908–22919 (2018). https://doi.org/10.1109/ACCESS.2018.2811723

    Article  Google Scholar 

  54. Fu, R., Wang, H., Zhao, W.: Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Syst. Appl. 63, 397–411 (2016). https://doi.org/10.1016/j.eswa.2016.06.042

    Article  Google Scholar 

  55. Yoshida, Y., Ohwada, H., Mizoguchi, F.: Extracting tendency and stability from time series and random forest for classifying a car driver’s cognitive load. In: 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing, 18–20 Aug 2014, pp. 258–265 (2014). https://doi.org/10.1109/icci-cc.2014.6921469

  56. Liang, Y., Reyes, M.L., Lee, J.D.: Real-time detection of driver cognitive distraction using support vector machines. IEEE Trans. Intell. Transp. Syst. 8(2), 340–350 (2007). https://doi.org/10.1109/TITS.2007.895298

    Article  Google Scholar 

  57. Solovey, E.T., Zec, M., Perez, E.A.G., Reimer, B., Mehler, B.: Classifying driver workload using physiological and driving performance data: two field studies. In: Paper presented at the Proceedings of the 32nd annual ACM conference on Human factors in computing systems, Toronto, Ontario, Canada (2014)

    Google Scholar 

  58. Kartsch, V.J., Benatti, S., Schiavone, P.D., Rossi, D., Benini, L.: A sensor fusion approach for drowsiness detection in wearable ultra-low-power systems. Inf. Fusion (2017). https://doi.org/10.1016/j.inffus.2017.11.005

    Article  Google Scholar 

  59. Yeo, M.V.M., Li, X., Shen, K., Wilder-Smith, E.P.V.: Can SVM be used for automatic EEG detection of drowsiness during car driving? Saf. Sci. 47(1), 115–124 (2009). https://doi.org/10.1016/j.ssci.2008.01.007

    Article  Google Scholar 

  60. Chen, L.-L., Zhao, Y., Ye, P.-F., Zhang, J., Zou, J.-Z.: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 85(Supplement C), 279–291 (2017). https://doi.org/10.1016/j.eswa.2017.01.040

  61. Hu, S., Zheng, G.: Driver drowsiness detection with eyelid related parameters by Support Vector Machine. Expert Syst. Appl. 36(4), 7651–7658 (2009). https://doi.org/10.1016/j.eswa.2008.09.030

    Article  Google Scholar 

  62. Chui, K.T., Tsang, K.F, Chi, H.R., Wu, C.K., Ling, B.W.K.: Electrocardiogram based classifier for driver drowsiness detection. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), 22–24 July 2015, pp. 600–603 (2015). https://doi.org/10.1109/indin.2015.7281802

  63. Yoshizawa, A., Nishiyama, H., Iwasaki, H., Mizoguchi, F.: Machine-learning approach to analysis of driving simulation data. In: 2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 22–23 Aug 2016, pp. 398–402 (2016). https://doi.org/10.1109/icci-cc.2016.7862067

  64. Liao, Y., Li, S.E., Li, G., Wang, W., Cheng, B., Chen, F.: Detection of driver cognitive distraction: an SVM based real-time algorithm and its comparison study in typical driving scenarios. In: 2016 IEEE Intelligent Vehicles Symposium (IV), 19–22 June 2016, pp. 394–399 (2016). https://doi.org/10.1109/ivs.2016.7535416

  65. Soman, K., Sathiya, A., Suganthi, N.: Classification of stress of automobile drivers using Radial Basis Function Kernel Support Vector Machine. In: International Conference on Information Communication and Embedded Systems (ICICES2014), 27–28 Feb 2014, pp. 1–5 (2014). https://doi.org/10.1109/icices.2014.7034000

  66. Munla, N., Khalil, M., Shahin, A., Mourad, A.: Driver stress level detection using HRV analysis. In: 2015 International Conference on Advances in Biomedical Engineering (ICABME), 16–18 Sept 2015, pp. 61–64 (2015). https://doi.org/10.1109/icabme.2015.7323251

  67. Vicente, J., Laguna, P., Bartra, A., Bailón, R.: Drowsiness detection using heart rate variability. Med. Biol. Eng. Comput. 54(6), 927–937 (2016). https://doi.org/10.1007/s11517-015-1448-7

    Article  Google Scholar 

  68. Garcés Correa, A., Orosco, L., Laciar, E.: Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. (0) (2013). http://dx.doi.org/10.1016/j.medengphy.2013.07.011

  69. Ma J, Murphey YL, Zhao H Real Time Drowsiness Detection Based on Lateral Distance Using Wavelet Transform and Neural Network. In: 2015 IEEE Symposium Series on Computational Intelligence, 7–10 Dec 2015, pp. 411–418 (2015). https://doi.org/10.1109/ssci.2015.68

  70. Dwivedi, K., Biswaranjan, K., Sethi, A.: Drowsy driver detection using representation learning. In: 2014 IEEE International Advance Computing Conference (IACC), 21–22 Feb 2014, pp. 995–999 (2014). https://doi.org/10.1109/iadcc.2014.6779459

  71. Manawadu, U.E.: Kawano, T., Murata, S., Kamezaki, M., Muramatsu, J., Sugano, S.: Multiclass classification of driver perceived workload using long short-term memory based recurrent neural network. In: 2018 IEEE Intelligent Vehicles Symposium (IV), 26–30 June 2018, pp. 1–6 (2018). https://doi.org/10.1109/ivs.2018.8500410

  72. Babaeian, M., Bhardwaj, N., Esquivel, B., Mozumdar, M.: Real time driver drowsiness detection using a logistic-regression-based machine learning algorithm. In: 2016 IEEE Green Energy and Systems Conference (IGSEC), 6–7 Nov 2016, pp. 1–6 (2016) https://doi.org/10.1109/igesc.2016.7790075

  73. Gurudath, N., Riley, H.B.: Drowsy driving detection by EEG analysis using wavelet transform and K-means clustering. Procedia Comput. Sci. 34, 400–409 (2014). https://doi.org/10.1016/j.procs.2014.07.045

    Article  Google Scholar 

  74. Ming, J., Zhelong, W.: A method for stress detection based on FCM algorithm. In: 2nd International Congress on Image and Signal Processing, 2009. CISP’09, 17–19 Oct 2009, pp. 1–5 (2009). https://doi.org/10.1109/cisp.2009.5304150

  75. El Haouij, N., Poggi, J.-M., Ghozi, R., Sevestre-Ghalila, S., Jaïdane, M.: Random forest-based approach for physiological functional variable selection for driver’s stress level classification. Stat. Methods Appl. (2018). https://doi.org/10.1007/s10260-018-0423-5

    Article  MATH  Google Scholar 

  76. Begum, S., Ahmed, M., Funk, P., Xiong, N., Schéele, B.V.: Using calibration and fuzzification of cases for improved diagnosis and treatment of stress (2006)

    Google Scholar 

  77. Begum, S., Barua, S., Filla, R., Ahmed, M.U.: Classification of physiological signals for wheel loader operators using Multi-scale Entropy analysis and case-based reasoning. Expert Syst. Appl. 41(2), 295–305 (2014). https://doi.org/10.1016/j.eswa.2013.05.068

    Article  Google Scholar 

  78. Begum, S., Ahmed, M.U., Funk, P., Filla, R.: Mental state monitoring system for the professional drivers based on Heart Rate Variability analysis and Case-Based Reasoning. In: Paper presented at the Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on 9–12 Sept 2012 (2012)

    Google Scholar 

  79. Kulkarni, A., Sathe, S.: Healthcare applications of the Internet of Things: a review. Int. J. Comput. Sci. Inf. Technol. 5(5), 6229–6232 (2014)

    Google Scholar 

  80. Ahmed, M., Espinosa, J., Reissner, A., Domingo, A., Banaee, H., Loutfi, A., Rafael-Palou, X,: Self-serve ICT-based health monitoring to support active ageing (2015). https://doi.org/10.13140/2.1.4956.1921

  81. Simonov, M., Zich, R., Mazzitelli, F.: Personalized healthcare communication In Internet of Things (2008)

    Google Scholar 

  82. Sidén, J., Skerved, V., Gao, J., Forsstr, S., #246, Nilsson, H.-E., Kanter, T., Gulliksson, M.: Home care with NFC sensors and a smart phone. In: Paper presented at the Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain (2011)

    Google Scholar 

  83. Salih, A., Abraham, A.: A review of ambient intelligence assisted healthcare monitoring. Int. J. Comput. Inf. Syst. Ind. Manage. (IJCISIM) 5, 741–750 (2013)

    Google Scholar 

  84. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuro Eng. Rehabil. 9(1), 21 (2012). https://doi.org/10.1186/1743-0003-9-21

    Article  Google Scholar 

  85. Parra, J., Hossain, M.A., Uribarren, A., Jacob, E.: Restful discovery and eventing for service provisioning in assisted living environments. Sensors (Basel, Switzerland) 14(5), 9227–9246 (2014). https://doi.org/10.3390/s140509227

    Article  Google Scholar 

  86. Ahmed, M.U., Banaee, H., Rafael-Palou, X., Loutfi, A.: Intelligent healthcare services to support health monitoring of elderly. In: Internet of Things. User-Centric IoT, pp. 178–186. Springer, Cham (2015)

    Google Scholar 

  87. Armstrong, S.: Wireless connectivity for health and sports monitoring: a review. Br. J. Sports Med. 41(5), 285–289 (2007). https://doi.org/10.1136/bjsm.2006.030015

    Article  Google Scholar 

  88. System, H.H.: Health@Home. http://www.aal-europe.eu/projects/healthhome/ (2016). Accessed 27 June 2016

  89. Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Xu, L.D., Kao-Walter, S., Chen, Q., Zheng, L.: A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014). https://doi.org/10.1109/TII.2014.2307795

    Article  Google Scholar 

  90. Projects Co.: Ambient Assisted Living Joint Programme (AAL JP) (2011)

    Google Scholar 

  91. Ahmed, M.: An intelligent healthcare service to monitor vital signs in daily life—A case study on health-IoT. Int. J. Eng. Res. Appl. 7, 43 (2017). https://doi.org/10.9790/9622-0703024345

    Article  Google Scholar 

  92. Ahmed, M.U., Banaee, H., Loutfi, A.: Health Monitoring for elderly: an application using case-based reasoning and cluster analysis. ISRN Artif. Intell. 2013, 11 (2013). https://doi.org/10.1155/2013/380239

    Article  Google Scholar 

  93. Tsiftes, N., Duquennoy, S., Voigt, T., Ahmed, M.U., Köckemann, U., Loutfi, A.: The E-Care@Home infrastructure for IoT-enabled healthcare. In: Internet of Things Technologies for HealthCare, pp. 138–140. Springer, Cham (2016)

    Google Scholar 

  94. Ahmed, M., Björkman, M., Lindén, M.: A Generic System-Level Framework for Self-Serve Health Monitoring System through Internet of Things (IoT), vol. 211 (2015). https://doi.org/10.3233/978-1-61499-516-6-305

  95. Strowig, S., Raskin, P.: Improved glycemic control in intensively treated type 1 diabetic patients using blood glucose meters with storage capability and computer-assisted analyses. Diabetes Care 21, 1694–1698 (1998). https://doi.org/10.2337/diacare.21.10.1694

    Article  Google Scholar 

  96. Association AH: Understanding blood pressure readings. http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp. Accessed 02 Dec 2019

  97. Ahmed, M.U., Loutfi, A.: Physical activity identification using supervised machine learning and based on pulse rate. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(7) (2013). http://dx.doi.org/10.14569/IJACSA.2013.040730

  98. Mariann, D.: Parkinson’s Disease Clinic and Research Center at the University of California SF The National Parkinson Foundation, Inc. http://www.parkinson.org/pdedu.htm. Accessed 05 July 2005

  99. Shefrin, S.L.: Therapeutic advances in idiopathic Parkinsonism. Expert Opin. Investig. Drugs 8(10), 1565–1588 (1999). https://doi.org/10.1517/13543784.8.10.1565

    Article  Google Scholar 

  100. Bredberg, E., Tedroff, J., Aquilonius, S.-M., Paalzow, L.: Pharmacokinetics and effects of levodopa in advanced Parkinson’s disease. Eur. J. Clin. Pharmacol. 39(4), 385–389 (1990). https://doi.org/10.1007/bf00315415

    Article  Google Scholar 

  101. Harder, S., Baas, H., Rietbrock, S.: Concentration-effect relationship of Levodopa in patients with Parkinson’s disease. Clin. Pharmacokinet. 29(4), 243–256 (1995). https://doi.org/10.2165/00003088-199529040-00004

    Article  Google Scholar 

  102. Nyholm, D., Askmark, H., Gomes-Trolin, C., Knutson, T., Lennernäs, H., Nyström, C., Aquilonius, S.-M.: Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin. Neuropharmacol. 26(3), 156–163 (2003)

    Article  Google Scholar 

  103. Nyholm, D., Nilsson Remahl, A.I.M., Dizdar, N., Constantinescu, R., Holmberg, B., Jansson, R., Aquilonius, S.-M., Askmark, H.: Duodenal levodopa infusion monotherapy versus oral polypharmacy in advanced Parkinson disease. Neurology 64(2), 216–223 (2005). https://doi.org/10.1212/01.Wnl.0000149637.70961.4c

    Article  Google Scholar 

  104. Sättler, M.: On off Schedule. Uppsala, Sweden

    Google Scholar 

  105. Ahmed, M.U.: A web enabled fuzzy rule-based decision support system for dose adjustments of Duodopa infusion to patients with advanced Parkinsons disease. Computer Engineering, Dalarna University, Dalarna, Sweden (2005)

    Google Scholar 

  106. Ahmend, M.U., Begum, S., Funk, P., Xiong, N., Von Schéele, B.: Case-based reasoning for diagnosis of stress using enhanced cosine and fuzzy similarity. Trans. Case-Based Reason. Multimedia Data 1(1), 3–19 (2008)

    Google Scholar 

  107. Ahmed, M.U., Begum, S., Funk, P., Xiong, N., von Scheele, B.: A multi-module case-based biofeedback system for stress treatment. Artif. Intell. Med. 51(2), 107–115 (2011). https://doi.org/10.1016/j.artmed.2010.09.003

    Article  Google Scholar 

  108. Ahmed, M.U., Begum, S., Funk, P., Xiong, N.: Fuzzy rule-based classification to build initial case library for case-based stress diagnosis. In: The Proceedings of 9th International Conference on Artificial Intelligence and Applications (AIA), pp 225–230 (2009)

    Google Scholar 

  109. AAPB: The Association for Applied Psychophysiology and Biofeedback. http://www.aapb.org/i4a/pages/index.cfm?pageid=336. Accessed 30 Nov 2019

  110. Stress TPo A Guide to Psychology and its Practice. http://www.guidetopsychology.com/stress.htm. Accessed 30 Nov 2019

  111. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transport. Syst. 6(2), 156–166 (2005). https://doi.org/10.1109/TITS.2005.848368

    Article  Google Scholar 

  112. Begum, S., Ahmed, M.U., Funk, P., Xiong, N.: Intelligent signal analysis using case-based reasoning for decision support in stress management. In: Bichindaritz, I., Vaidya, S., Jain, A., Jain, L.C. (eds.) Computational Intelligence in Healthcare 4: Advanced Methodologies. Springer, Berlin, Heidelberg, Berlin, Heidelberg, pp 159–189. (2010). https://doi.org/10.1007/978-3-642-14464-6_8

  113. Ahmed, M.U.: A case-based multi-modal clinical system for stress management. Mälardalen University (2010)

    Google Scholar 

  114. Ahmed, M., Funk, P.: A case-based retrieval system for post-operative pain treatment (2011)

    Google Scholar 

  115. Ahmed, M., Funk, P.: Mining rare cases in post-operative pain by means of outlier detection (2011). https://doi.org/10.1109/ISSPIT.2011.6151532

  116. Ahmed, M.U.: Multimodal Approach for Clinical Diagnosis and Treatment. Mälardalen University (2011)

    Google Scholar 

  117. Singh, S.: Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. Traffic Safety Facts Crash. Report No. DOT HS 812 115. National Highway Traffic Safety Administration, Washington, DC (2015)

    Google Scholar 

  118. Barua, S.: Multivariate Data Analytics to Identify Driver’s Sleepiness, Cognitive Load, and Stress. Mälardalen University (2019)

    Google Scholar 

  119. Barua, S., Ahmed, M.U., Ahlstrom, C., Begum, S., Funk, P.: Automated EEG artifact handling with application in driver monitoring. IEEE J. Biomed. Health Inf. (99), 1–1 (2017). https://doi.org/10.1109/jbhi.2017.2773999

  120. Nilsson, E., Ahlström, C., Barua, S., Fors, C., Lindén, P., Svanberg, B., Begum, S., Ahmed, M.U., Anund, A.: Vehicle Driver Monitoring: Sleepiness and Cognitive Load (Driver Monitoring: sömnighet och kognitiv belastning (swe)). VTI rapport. Statens väg- och transportforskningsinstitut, Linköping (2017)

    Google Scholar 

  121. Åkerstedt, T., Anund, A., Axelsson, J., Kecklund, G.: Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function. J. Sleep Res. 23(3), 242–254 (2014). https://doi.org/10.1111/jsr.12158

    Article  Google Scholar 

  122. Mehler, B., Reimer, B, Wang, Y.: A comparison of heart rate and heart rate variability indices in distinguishing single-task driving and driving under secondary cognitive workload. In: Paper presented at the 6th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, Olympic Valley - Lake Tahoe, California, USA, June 27–30 (2011)

    Google Scholar 

  123. Filla, R., Olsson, E., von Schéele, B., Ohlsson, K.: A case study on quantifying the workload of working machine operators by means of psychophysiological measurements. In: The 13th Scandinavian International Conference on Fluid Power, SICFP2013, 3–5 June 2013, Linköping, Sweden (2013)

    Google Scholar 

  124. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. In: Paper presented at the Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies (2007)

    Google Scholar 

  125. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E 84(6), 061918 (2011)

    Article  Google Scholar 

  126. Sandberg, D., Åkerstedt, T., Anund, A., Kecklund, G., Wahde, M.: Detecting driver sleepiness using optimized nonlinear combinations of sleepiness indicators. IEEE Transactions on Intelligent Transportation Systems 12(1) (2011)

    Google Scholar 

  127. Åkerstedt, T., Connor, J., Gray, A., Kecklund, G.: Predicting road crashes from a mathematical model of alertness regulation—The sleep/wake predictor. Accid. Anal. Prev. 40(4), 1480–1485 (2008). https://doi.org/10.1016/j.aap.2008.03.016

    Article  Google Scholar 

  128. Barua, S., Ahmed, M.U., Ahlström, C., Begum, S.: Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert Syst. Appl. 115, 121–135 (2019). https://doi.org/10.1016/j.eswa.2018.07.054

    Article  Google Scholar 

  129. Barua, S., Ahmed, M.U., Begum, S.: Classifying drivers’ cognitive load using EEG signals. Stud. Health Technol. Inf. 237, 99–106 (2017)

    Google Scholar 

  130. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1), 39–59 (1994)

    Article  Google Scholar 

  131. Watson, I.: Applying case-based reasoning: techniques for enterprise systems. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  132. Montani, S., Portinale, L., Leonardi, G., Bellazzi, R., Bellazzi, R.: Case-based retrieval to support the treatment of end stage renal failure patients. Artif. Intell. Med. 37(1), 31–42 (2006). https://doi.org/10.1016/j.artmed.2005.06.003

    Article  Google Scholar 

  133. Association AH: Understanding Blood Pressure Readings. Updated November 7 (2014)

    Google Scholar 

  134. Culhane, K.M., O’Connor, M., Lyons, D., Lyons, G.M.: Accelerometers in rehabilitation medicine for older adults. Age Ageing 34(6), 556–560 (2005). https://doi.org/10.1093/ageing/afi192

    Article  Google Scholar 

  135. World Health O: Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and Classification of Diabetes Mellitus. World Health Organization, Geneva (1999)

    Google Scholar 

  136. Deurenberg, P., Weststrate, J.A., Seidell, J.C.: Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br. J. Nutr. 65(2), 105–114 (1991). https://doi.org/10.1079/BJN19910073

    Article  Google Scholar 

  137. Ahmed, M.U.: A personalized health-monitoring system for elderly by combining rules and case-based reasoning. In: pHealth, pp. 249–254 (2015)

    Google Scholar 

  138. Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Signal Process. Control 31, 407–418 (2017). https://doi.org/10.1016/j.bspc.2016.09.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the projects named ESS-H: Embedded Sensor Systems for Health Research Profile is funded by Knowledge Foundation and SAAPHO: Secure Active Aging: Participation and Health for the Old (aal-2010-3-035) is funded by the Call AAL (Ambient Assisted Living) within the Call 3. Authors would also like to acknowledge the Swedish Governmental Agency for Innovation Systems (VINNOVA), Volvo Car Corporation, and VTI for financing the Vehicle Driver Monitoring (VDM) project. Authors also acknowledge the funding agency KKS and project partners for the IMod and the SafeDriver project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mobyen Uddin Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M.U., Barua, S., Begum, S. (2021). Artificial Intelligence, Machine Learning and Reasoning in Health Informatics—Case Studies. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_12

Download citation

Publish with us

Policies and ethics