Skip to main content

Distributed Testing of Distance-k Colorings

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2020)

Abstract

We study the distributed decision problem related to checking distance-k coloring, defined as color assignments to the nodes such that every pair of vertices at distance at most k must receive distinct colors. While checking the validity of a distance-k coloring only requires \(\lceil k/2\rceil \) rounds in the Local model, and a single round in the Congest model when \(k\le 2\), the task is extremely costly for higher k’s in Congest—there is a lower bound of \(\varOmega (\varDelta ^{k/2})\) rounds in graphs with maximum degree \(\varDelta \). We therefore explore the ability of checking distance-k coloring via distributed property testing. We consider several farness criteria for measuring the distance to a valid coloring, and we derive upper and lower bounds for each of them. In particular, we show that for one natural farness measure, significantly better algorithms are possible for testing distance-3 coloring than for testing distance-k coloring for \(k \ge 4\).

Pierre Fraigniaud is partially supported by ANR Projects DESCARTES, QuDATA, and FREDDA; Magnús M. Halldórsson and Alexandre Nolin are partially supported by Icelandic Research Foundation grant 174484-051.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower bounds for distributed distance computations, even in sparse networks. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 29–42. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_3

    Chapter  MATH  Google Scholar 

  2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction (extended abstract). In: FOCS, pp. 268–277 (1991)

    Google Scholar 

  4. Bamberger, P., Kuhn, F., Maus, Y.: Efficient deterministic distributed coloring with small bandwidth. CoRR abs/1912.02814 (2019)

    Google Scholar 

  5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib. Comput. 24(2), 79–89 (2011). https://doi.org/10.1007/s00446-011-0132-x

    Article  MATH  Google Scholar 

  7. Brody, J., Chakrabarti, A., Kondapally, R., Woodruff, D.P., Yaroslavtsev, G.: Beyond set disjointness: the communication complexity of finding the intersection. In: PODC, pp. 106–113 (2014)

    Google Scholar 

  8. Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algorithms for testing graph properties. Distrib. Comput. 32(1), 41–57 (2018). https://doi.org/10.1007/s00446-018-0324-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds for the CONGEST model. In: DISC, pp. 10:1–10:16 (2017)

    Google Scholar 

  10. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: PODC, pp. 367–376 (2014)

    Google Scholar 

  11. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Even, G., et al.: Three notes on distributed property testing. In: DISC, pp. 15:1–15:30 (2017)

    Google Scholar 

  13. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119 (2016). http://eatcs.org/beatcs/index.php/beatcs/article/view/411

  14. Fischer, O., Gonen, T., Oshman, R.: Distributed property testing for subgraph-freeness revisited. CoRR abs/1705.04033 (2017)

    Google Scholar 

  15. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized distributed decision. Distrib. Comput. 27(6), 419–434 (2014). https://doi.org/10.1007/s00446-014-0211-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Fraigniaud, P., Halldórsson, M.M., Patt-Shamir, B., Rawitz, D., Rosén, A.: Shrinking maxima, decreasing costs: new online packing and covering problems. Algorithmica 74(4), 1205–1223 (2016). https://doi.org/10.1007/s00453-015-9995-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35:1–35:26 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Fraigniaud, P., Olivetti, D.: Distributed detection of cycles. ACM Trans. Parallel Comput. 6(3), 1–20 (2019)

    Google Scholar 

  19. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes. Distrib. Comput. 32(3), 217–234 (2018). https://doi.org/10.1007/s00446-018-0340-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Fraigniaud, P., Rapaport, I., Salo, V., Todinca, I.: Distributed testing of excluded subgraphs. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 342–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_25

    Chapter  MATH  Google Scholar 

  21. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diameter in sublinear time. In: SODA, pp. 1150–1162 (2012)

    Google Scholar 

  22. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algorithms. In: FOCS, pp. 662–673 (2018)

    Google Scholar 

  23. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16367-8

    Book  MATH  Google Scholar 

  24. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory Comput. 12(1), 1–33 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Halldórsson, M.M., Kuhn, F., Maus, Y.: Distance-2 coloring in the CONGEST model. CoRR abs/2005.06528 (2020)

    Google Scholar 

  26. Håstad, J., Wigderson, A.: The randomized communication complexity of set disjointness. Theory Comput. 3(11), 211–219 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: PODC, pp. 355–364 (2012)

    Google Scholar 

  28. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In: FOCS, pp. 226–239 (1994)

    Google Scholar 

  29. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp. 255–264 (2018)

    Google Scholar 

  31. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)

    MATH  Google Scholar 

  32. Kuhn, F., Oshman, R.: The complexity of data aggregation in directed networks. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 416–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_40

    Chapter  Google Scholar 

  33. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: SODA, pp. 1096–1115 (2020)

    Google Scholar 

  34. Razborov, A.A.: On the distributional complexity of disjointness. Theory Comput. Sci. 106, 385–390 (1992). https://doi.org/10.1007/BFb0032036

    Article  MathSciNet  MATH  Google Scholar 

  35. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. CoRR abs/1907.10937 (2019)

    Google Scholar 

  36. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Nolin .

Editor information

Editors and Affiliations

A Verifying Distance-k Colorings in Bounded-Degree Graphs

A Verifying Distance-k Colorings in Bounded-Degree Graphs

1.1 A.1 A matching lower bound for the natural algorithm

In a graph of maximum degree \(\varDelta \), the nodes can learn their distance-\(\lceil k / 2 \rceil \) neighborhood in \(O\left( \varDelta ^{\lceil k/2\rceil -1}\right) \) rounds in Congest. In particular, an invalid distance-k coloring can be detected with this number of rounds in Congest, since two nodes of distance at most k are both within a distance \(\lceil k / 2 \rceil \) of some node. This protocol is actually close to optimal, as our next theorem shows.

Theorem 7

For \(k \ge 3\), the verification of a distance-k coloring requires \(\widetilde{\varOmega }\left( \varDelta ^{\lceil k/2\rceil -1}\right) \) rounds in the Congest model.

Fig. 7.
figure 7

The graph we use for our lower bound. It consists of 2 complete \((\varDelta -1)\)-ary trees of depth \(\lceil k/2\rceil -1\) linked at their roots.

Proof sketch. The proof again relies on embedding a Set Disjointness instance in a graph (see Fig. 7). Here, a Set Disjointness instance with sets of size up to \(\varTheta (\varDelta -^{\lceil k/2\rceil -1})\) and no promise on the intersection can be embedded, with a single edge connecting Alice’s and Bob’s parts of the graph.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraigniaud, P., Halldórsson, M.M., Nolin, A. (2020). Distributed Testing of Distance-k Colorings. In: Richa, A., Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2020. Lecture Notes in Computer Science(), vol 12156. Springer, Cham. https://doi.org/10.1007/978-3-030-54921-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54921-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54920-6

  • Online ISBN: 978-3-030-54921-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics