Skip to main content

A Heuristic Approach to Convex Integration for the Euler Equations

  • Chapter
  • First Online:
Progress in Mathematical Fluid Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2272))

Abstract

The purpose of these lecture notes is to employ a heuristic approach in designing a convex integration scheme that produces non-conservative weak solutions to the Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice is often simpler to assume that the frequencies grow super-exponentially (cf. [2, 5, 12, 17]). However, for the purpose of heuristics, geometric growth simplifies some of the calculations.

  2. 2.

    It should be noted however that in order for the scheme described here to close, one should replace the geometric growth of frequencies λ q described in (1.7) with superexponential growth. A scheme involving geometric growth of frequencies is slightly more delicate to describe.

References

  1. T. Buckmaster, Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198 (2015)

    MathSciNet  MATH  Google Scholar 

  2. T. Buckmaster, C. De Lellis, P. Isett, L. Székelyhidi, Jr., Anomalous dissipation for 1∕5-Hölder Euler flows. Ann. Math. 182(1), 127–172 (2015)

    Article  MathSciNet  Google Scholar 

  3. T. Buckmaster, C. De Lellis, L. Székelyhidi, Jr., Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69(9), 1613–1670 (2016)

    MathSciNet  MATH  Google Scholar 

  4. T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., V. Vicol, Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 227–448 (2019)

    MathSciNet  MATH  Google Scholar 

  5. T. Buckmaster, V. Vicol, Convex Integration and Phenomenologies in Turbulence (2019)

    Google Scholar 

  6. T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189(1), 101–144 (2019)

    MathSciNet  MATH  Google Scholar 

  7. A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    MathSciNet  MATH  Google Scholar 

  8. M. Colombo, C. De Lellis, L. De Rosa, Ill-posedness of Leray solutions for the ipodissipative Navier–Stokes equations (2017). arXiv:1708.05666

    Google Scholar 

  9. P. Constantin, E. Weinan, E. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    MathSciNet  MATH  Google Scholar 

  10. S. Daneri, L. Székelyhidi Jr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514 (2017)

    MathSciNet  MATH  Google Scholar 

  11. C. De Lellis, L. Székelyhidi, Jr., The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Google Scholar 

  12. C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    MathSciNet  MATH  Google Scholar 

  13. C. De Lellis, L. Székelyhidi, Jr., Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    MathSciNet  MATH  Google Scholar 

  14. C. De Lellis, L. Székelyhidi, Jr., On h-principle and Onsager’s conjecture. Eur. Math. Soc. Newsl. 95, 19–24 (2015)

    MathSciNet  MATH  Google Scholar 

  15. J. Duchon, R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249 (2000)

    Google Scholar 

  16. G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Phys. D: Nonlinear Phenom. 78(3–4), 222–240 (1994)

    MATH  Google Scholar 

  17. P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time (2012). arXiv:1211.4065

    Google Scholar 

  18. P. Isett, A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963 (2018)

    MathSciNet  MATH  Google Scholar 

  19. J. Nash, C 1 isometric imbeddings. Ann. Math. 383–396 (1954)

    Google Scholar 

  20. L. Onsager, Statistical hydrodynamics. Nuovo Cimento (9), 6 (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

    Google Scholar 

  21. V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    MathSciNet  MATH  Google Scholar 

  22. A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T.B. was supported by the NSF grant DMS-1900149 and a Simons Foundation Mathematical and Physical Sciences Collaborative Grant. V.V. was supported by the NSF grant DMS-1911413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Buckmaster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buckmaster, T., Vicol, V. (2020). A Heuristic Approach to Convex Integration for the Euler Equations. In: Berselli, L.C., Růžička, M. (eds) Progress in Mathematical Fluid Dynamics. Lecture Notes in Mathematics(), vol 2272. Springer, Cham. https://doi.org/10.1007/978-3-030-54899-5_1

Download citation

Publish with us

Policies and ethics