Skip to main content

Ultrasound Biomicroscopy (UBM)

  • Chapter
  • First Online:
  • 1153 Accesses

Abstract

Ultrasonic biomicroscopy (UBM) is a diagnostic and treatment device that utilizes 50–100 MHz high-frequency sound waves to produce a very high-resolution image but with relatively less penetration depth of about 4–5 mm. It has multiple applications to evaluate anterior segment structures; cornea, angle, iris and peripheral choroid. This chapter summarized the physics and clinical applications of UBM as a non-topographic corneal imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pavlin CJ, Foster FS. Ultrasound biomicroscopy of the eye: Springer Science & Business Media; 2012.

    Google Scholar 

  2. Alio JL. Keratoconus. Recent Advances in Diagnosis and Treatment Alicante: Springer. 2017.

    Google Scholar 

  3. Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97(2):244–50.

    Article  CAS  PubMed  Google Scholar 

  4. Martin R. Cornea and anterior eye assessment with slit lamp biomicroscopy, specular microscopy, confocal microscopy, and ultrasound biomicroscopy. Indian J Ophthalmol. 2018;66(2):195.

    PubMed  PubMed Central  Google Scholar 

  5. Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV, Rao HL, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(14):6079–88.

    Article  PubMed  Google Scholar 

  6. Rosen DB, Conway MD, Ingram CP, Ross RD, Montilla LG. A brief overview of ophthalmic ultrasound imaging. Novel Diagnostic Methods in Ophthalmology: IntechOpen; 2019.

    Google Scholar 

  7. Avitabile T, Russo V, Ghirlanda R, Castiglione F, Marino A, Reibaldi A. Corneal oedemas: diagnosis and surgical planning with ultrasound biomicroscopy. Ophthalmologica. 1998;212(Suppl. 1):13–6.

    Google Scholar 

  8. Kanellopoulos AJ, Asimellis G. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements. Clin Ophthalmol (Auckland, NZ). 2013;7:2239.

    Google Scholar 

  9. Kapetansky FM. A new water bath for ultrasonic biomicroscopy. Ophthalm Surg Lasers Imaging Retina. 1997;28(7):605–6.

    Google Scholar 

  10. Esaki K, Ishikawa H, Liebmann JM, Ritch R. A technique for performing ultrasound biomicroscopy in the sitting and prone positions. Ophthalm Surg Lasers Imaging Retina. 2000;31(2):166–9.

    Google Scholar 

  11. He M, Wang D, Jiang Y. Overview of ultrasound biomicroscopy. J Curr Glaucoma Prac. 2012;6(1):25.

    Google Scholar 

  12. Pavlin CJ, Ritch R, Foster FS. Ultrasound biomicroscopy in plateau iris syndrome. Am J Ophthalmol. 1992;113(4):390–5.

    Article  CAS  PubMed  Google Scholar 

  13. Zur D, Neudorfer M, Shulman S, Rosenblatt A, Habot-Wilner Z. High-resolution ultrasound biomicroscopy as an adjunctive diagnostic tool for anterior scleral inflammatory disease. Acta Ophthalmol. 2016;94(6):e384–9.

    Google Scholar 

  14. Pavlin CJ, Simpson ER, Foster FS. Ultrasound biomicroscopy. Ultrasound Clin. 2008;3(2):185–94.

    Google Scholar 

  15. Bhatt DC. Ultrasound biomicroscopy: an overview. J Clin Ophthalmol Res. 2014;2(2):115.

    Google Scholar 

  16. Huang EC, Barocas VH. Active iris mechanics and pupillary block: steady-state analysis and comparison with anatomical risk factors. Ann Biomed Eng. 2004;32(9):1276–85.

    Article  PubMed  Google Scholar 

  17. Liu L, Ong EL, Crowston J. The concave iris in pigment dispersion syndrome. Ophthalmology. 2011;118(1):66–70.

    Article  PubMed  Google Scholar 

  18. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan H, Yan Li. Atlas of ocular trauma. Springer; 2019.

    Google Scholar 

  20. Osman EA. The benefit of ultrasound biomicroscopy (UBM) in management of total Descemet’s membrane detachment after deep sclerectomy surgery. Int Ophthalmol. 2011;31(4):345.

    Article  PubMed  Google Scholar 

  21. Zhou S-y, Wang C-x, Cai X-y, Huang D, Liu Y-z. Optical coherence tomography and ultrasound biomicroscopy imaging of opaque corneas. Cornea. 2013;32(4):e25.

    Google Scholar 

  22. Guerriero S, La Tegola MG, Monno R, Apruzzese M, Cantatore A. A case of descemet's membrane rupture in a patient affected by Acanthamoeba Keratitis. Eye Contact Lens. 2009;35(6):338–40.

    Google Scholar 

  23. Bahadir AE, Bozkurt TK, Kutan SA, Yanyali CA, Acar S. Candida interface keratitis following deep anterior lamellar keratoplasty. Int Ophthalmol. 2012;32(4):383–6.

    Article  PubMed  Google Scholar 

  24. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  25. Dada T, Aggarwal A, Vanathi M, Gadia R, Panda A, Gupta V, et al. Ultrasound biomicroscopy in opaque grafts with post-penetrating keratoplasty glaucoma. Cornea. 2008;27(4):402–5.

    Article  PubMed  Google Scholar 

  26. Algaeed AH, Kozak I. Clinical atlas of ophthalmic ultrasound. Springer; 2019.

    Google Scholar 

  27. Sohar N, Skribek A, Fulop Z, Kolozsvari L. The success of treating keratoconus: visual acuity and follow-up with ultrasound biomicroscopy. Spektrum der Augenheilkunde. 2012;26(3):159–64.

    Google Scholar 

  28. Sharma N, Mannan R, Jhanji V, Agarwal T, Pruthi A, Titiyal JS, et al. Ultrasound biomicroscopy-guided assessment of acute corneal hydrops. Ophthalmology. 2011;118(11):2166–71.

    Article  PubMed  Google Scholar 

  29. Nakagawa T, Maeda N, Okazaki N, Hori Y, Nishida K, Tano Y. Ultrasound biomicroscopic examination of acute hydrops in patients with keratoconus. Am J Ophthalmol. 2006;141(6):1134–6.

    Article  PubMed  Google Scholar 

  30. Reinstein DZ, Archer T. Combined Artemis very high-frequency digital ultrasound-assisted transepithelial phototherapeutic keratectomy and wavefront-guided treatment following multiple corneal refractive procedures. J Cataract Refract Surg. 2006;32(11):1870–6.

    Article  PubMed  Google Scholar 

  31. Reinstein DZ, Rothman RC, Couch DG, Archer TJ. Artemis very high-frequency digital ultrasound-guided repositioning of a free cap after laser in situ keratomileusis. J Cataract Refract Surg. 2006;32(11):1877–83.

    Article  PubMed  Google Scholar 

  32. Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alió JL, Azar DT, Abbouda A, El Aswad A. Difficult and complicated cases in refractive surgery. Springer; 2015.

    Google Scholar 

  34. Ahn ES. Ophthalmic Ultrasonography, Singh AD, Hayden BC (eds). BMJ Publishing Group Ltd; 2012.

    Google Scholar 

  35. Avitabile T, Marano F, Castiglione F, Reibaldi A. Keratoconus staging with ultrasound biomicroscopy. Ophthalmologica. 1998;212(Suppl. 1):10–2

    Google Scholar 

  36. Skribek A, Sohár N, Gyetvai T, Nógrádi A, Kolozsvári L. Role of ultrasound biomicroscopy in diagnosis and treatment of Terrien disease. Cornea. 2008;27(4):427–33.

    Article  PubMed  Google Scholar 

  37. Berrocal AM, Chen PC, Soukiasian SH. Ultrasound biomicroscopy of corneal hydrops in Terrien's marginal degeneration. Ophthalm Surg Las Imag Retina. 2002;33(3):228–30

    Google Scholar 

  38. Silas MR, Hilkert SM, Reidy JJ, Farooq AV. Posterior keratoconus. Br J Ophthalmol. 2018;102(7):863–7.

    Article  PubMed  Google Scholar 

  39. Zhang Y, Zhou J, Zhu D. Ultrasonographic characteristics of congenital corneal staphyloma. J Med Ultrason 2016;43(2):291–3

    Google Scholar 

  40. Reinstein DZ, Silverman RH, Coleman DJ. High-frequency ultrasound measurement of the thickness of the corneal epithelium. J Refract Surg. 1993;9(5):385–7.

    CAS  Google Scholar 

  41. Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2012;28(3):195–201.

    Article  PubMed  Google Scholar 

  42. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010;26(8):555–64.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reinstein DZ, Archer TJ, Gobbe M. Epithelial thickness up to 26 years after radial keratotomy: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2011;27(8):618–24.

    Article  PubMed  Google Scholar 

  44. Reinstein DZ, Srivannaboon S, Holland SP. Epithelial and stromal changes induced by intacs examined by three-dimensional very high-frequency digital ultrasound. J Refract Surg. 2001;17(3):310–8.

    CAS  PubMed  Google Scholar 

  45. Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol (Auckland, NZ). 2012;6:789.

    Article  CAS  Google Scholar 

  46. Reinstein DZ, Gobbe M, Archer TJ, Couch D. Epithelial thickness profile as a method to evaluate the effectiveness of collagen cross-linking treatment after corneal ectasia. J Refract Surg. 2011;27(5):356–63.

    Article  PubMed  Google Scholar 

  47. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Stromal thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(9):776–86.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014;30(12):800–5.

    Article  Google Scholar 

  49. Silverman RH, Patel MS, Gal O, Sarup A, Deobhakta A, Dababneh H, et al. Effect of corneal hydration on ultrasound velocity and backscatter. Ultrasound Med Biol. 2009;35(5):839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chakrabarti HS, Craig JP, Brahma A, Malik TY, McGhee CN. Comparison of corneal thickness measurements using ultrasound and Orbscan slit-scanning topography in normal and post-LASIK eyes. J Cataract Refract Surg. 2001;27(11):1823–8.

    Article  CAS  PubMed  Google Scholar 

  51. Roberts C. The cornea is not a piece of plastic. J Refract Surg. 2000;16(4):407–13.

    CAS  PubMed  Google Scholar 

  52. Reinstein DZ, Couch DG, Archer T. Direct residual stromal thickness measurement for assessing suitability for LASIK enhancement by Artemis 3D very high-frequency digital ultrasound arc scanning. J Cataract Refract Surg. 2006;32(11):1884–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Ghiasian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghiasian, L., Hashemian, S.J. (2021). Ultrasound Biomicroscopy (UBM). In: Mohammadpour, M. (eds) Diagnostics in Ocular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-54863-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54863-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54862-9

  • Online ISBN: 978-3-030-54863-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics