Skip to main content

Anterior Segment Optical Coherence Tomography and Glaucoma

  • Chapter
  • First Online:
Diagnostics in Ocular Imaging

Abstract

Correct assessment of anterior chamber angle is important as it will determine the management plan and prognosis for the angle closure glaucoma. The advent of anterior segment optical coherence tomography (ASOCT) considerably improved the visualization of angle structures and facilitated more detailed assessments of the angle. The anterior segment images obtained using ASOCT can help in diagnosis, screening, and making decisions regarding performing laser treatments, choosing the appropriate surgical approach, and predicting success after procedures. In this chapter we discuss the information provided by the ASOCT, and various applications of ASOCT for glaucoma disease, such as angle assessment, pathophysiology of angle closure, or evaluation of the filtering bleb and tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izatt JA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

    Article  CAS  PubMed  Google Scholar 

  2. Li H, et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91(11):1490–2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gazzard G, et al. Light to dark physiological variation in irido-trabecular angle width. Br J Ophthalmol. 2004;88:1357–482.

    Google Scholar 

  4. Moghimi S, et al. Comparison of anterior segment-optical coherence tomography parameters in phacomorphic angle closure and acute angle closure eyes. Invest Ophthalmol Vis Sci. 2015;56(13):7611–7.

    Article  CAS  PubMed  Google Scholar 

  5. Moghimi S, et al. Classification of primary angle closure spectrum with hierarchical cluster analysis. PLoS ONE. 2018;13(7):e0199157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Moghimi S, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013;155(4):664–73, 673 e1.

    Google Scholar 

  7. Moghimi S, et al. Role of lens vault in subtypes of angle closure in Iranian subjects. Eye. 2014.

    Google Scholar 

  8. Moghimi S, et al. Acute angle closure: qualitative and quantitative evaluation of the anterior segment using anterior segment optical coherence tomography. Clin Exp Ophthalmol. 2014;42(7):615–22.

    Article  PubMed  Google Scholar 

  9. Napier ML, Azuara-Blanco A. Changing patterns in treatment of angle closure glaucoma. Curr Opin Ophthalmol. 2018;29(2):130–4.

    Article  PubMed  Google Scholar 

  10. Nolan W. Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography. Curr Opin Ophthalmol. 2008;19(2):115–21.

    Article  PubMed  Google Scholar 

  11. Nolan WP, et al. Changes in angle configuration after phacoemulsification measured by anterior segment optical coherence tomography. J Glaucoma. 2008;17(6):455–9.

    Article  PubMed  Google Scholar 

  12. Nongpiur M, et al. Anterior segment imaging-based subdivision of subjects with primary angle-closure glaucoma. Eye. 2016.

    Google Scholar 

  13. Nongpiur ME, et al. Subgrouping of primary angle-closure suspects based on anterior segment optical coherence tomography parameters. Ophthalmology. 2013;120(12):2525–31.

    Article  PubMed  Google Scholar 

  14. Nongpiur ME, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118(3):474–9.

    Article  PubMed  Google Scholar 

  15. Lai I, et al. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology. 2013;120(6):1144–9.

    Article  PubMed  Google Scholar 

  16. Mak H, Xu G, Leung CK-S. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120(12):2517–24.

    Article  PubMed  Google Scholar 

  17. Dada T, et al. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007;33(5):837–40.

    Article  PubMed  Google Scholar 

  18. Nolan WP, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114(1):33–9.

    Article  PubMed  Google Scholar 

  19. Ang GS, Wells AP. Factors influencing laser peripheral iridotomy outcomes in white eyes: an anterior segment optical coherence tomography study. J Glaucoma. 2011;20(9):577–83.

    Article  PubMed  Google Scholar 

  20. Baskaran M, et al. Residual angle closure one year after laser peripheral iridotomy in primary angle closure suspects. Am J Ophthalmol. 2017;183:111–7.

    Article  PubMed  Google Scholar 

  21. Han S, et al. Outcomes of laser peripheral iridotomy in angle closure subgroups according to anterior segment optical coherence tomography parameters LPI. Invest Ophthalmol Vis Sci. 2014;55(10):6795–801.

    Article  PubMed  Google Scholar 

  22. He M, et al. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial. The Lancet. 2019;393(10181):1609–18.

    Article  Google Scholar 

  23. Lee RY, et al. Association between baseline iris thickness and prophylactic laser peripheral iridotomy outcomes in primary angle-closure suspects. Ophthalmology. 2014;121(6):1194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moghimi S, et al. Changes in anterior segment morphology after laser peripheral iridotomy in acute primary angle closure. Am J Ophthalmol. 2016;166:133–40.

    Article  PubMed  Google Scholar 

  25. Eslami Y, et al. Effect of adjunctive viscogonioplasty on drainage angle status in cataract surgery: a randomized clinical trial. Clin Exp Ophthalmol. 2013;41(4):368–78.

    Article  PubMed  Google Scholar 

  26. Hsia YC, et al. Anterior segment parameters as predictors of intraocular pressure reduction after phacoemulsification in eyes with open-angle glaucoma. J Cataract Refract Surg. 2017;43(7):879–85.

    Article  PubMed  Google Scholar 

  27. Huang G, et al. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract. J Cataract Refract Surg. 2012;38(1):108–16.

    Article  PubMed  Google Scholar 

  28. Kim M, et al. Anterior chamber configuration changes after cataract surgery in eyes with glaucoma. Korean J Ophthalmol. 2012;26(2):97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moghimi S, et al. Lens parameters as predictors of intraocular pressure changes after phacoemulsification. Eye. 2015;29(11):1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YK, et al. Relative lens vault in subjects with angle closure. BMC Ophthalmol. 2014;14(1):93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang D, et al. Ethnic difference of the anterior chamber area and volume and its association with angle width. Invest Ophthalmol Vis Sci. 2012;53(6):3139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu RY, et al. Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography. Arch Ophthalmol. 2011;129(5):569–74.

    Article  PubMed  Google Scholar 

  33. Rigi M, et al. Agreement between gonioscopic examination and swept source Fourier domain anterior segment optical coherence tomography imaging. J Ophthalmol. 2016;2016.

    Google Scholar 

  34. Lavanya R, et al. Screening for narrow angles in the Singapore population: evaluation of new noncontact screening methods. Ophthalmology. 2008;115(10):1720–7, 1727 e1–2.

    Google Scholar 

  35. Porporato N, et al. Assessment of circumferential angle closure with swept-source optical coherence tomography: a community based study. Am J Ophthalmol. 2019;199:133–9.

    Article  PubMed  Google Scholar 

  36. Mansouri M, et al. Anterior segment optical coherence tomography parameters in phacomorphic angle closure and mature cataracts. Invest Ophthalmol Vis Sci. 2014;55(11):7403–9.

    Article  PubMed  Google Scholar 

  37. Shabana N, et al. Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms. Clin Exp Ophthalmol. 2012;40(8):792–801.

    Article  PubMed  Google Scholar 

  38. Huang G, et al. Anatomic predictors for anterior chamber angle opening after laser peripheral iridotomy in narrow angle eyes. Curr Eye Res. 2012;37(7):575–82.

    Article  PubMed  Google Scholar 

  39. Tun TA, et al. Swept-source optical coherence tomography assessment of iris–trabecular contact after phacoemulsification with or without goniosynechialysis in eyes with primary angle closure glaucoma. Br J Ophthalmol. 2015;99(7):927–31.

    Article  PubMed  Google Scholar 

  40. Leung CK, et al. Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91(3):340–4.

    Article  PubMed  Google Scholar 

  41. Narita A, et al. Characteristics of early filtering blebs that predict successful trabeculectomy identified via three-dimensional anterior segment optical coherence tomography. Br J Ophthalmol. 2018;102(6):796–801.

    Article  PubMed  Google Scholar 

  42. Law SK, et al. Technique of combined glaucoma tube shunt and keratoprosthesis implantation. J Glaucoma. 2014;23(8):501–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding/support: None.

Financial Disclosure: S. Moghimi, None; M. Safizadeh, None; J. Do, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Moghimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moghimi, S., SafiZadeh, M., Do, J. (2021). Anterior Segment Optical Coherence Tomography and Glaucoma. In: Mohammadpour, M. (eds) Diagnostics in Ocular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-54863-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54863-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54862-9

  • Online ISBN: 978-3-030-54863-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics