Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 312 Accesses

Abstract

Throughout the works in this thesis, UED was demonstrated to be a powerful technique to elucidate the photoinduced structural dynamics of moderately sized organic molecules with femtosecond time resolution and atomic spatial resolution. However, there are limits of interpretation to these molecular movies since the atomic motions were refined using structure models that are based on crystal structures measured or calculated previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ADT and RED are electron-diffraction equivalents of the precession and rotation XRD techniques already in common usage (see Refs. [59, 565] and [10, 11] respectively).

  2. 2.

    Freyer et al. have reported femtosecond XRD results using the Arndt-Wonacott geometry in reflection mode [166].

  3. 3.

    See Ref. [419] and the references therein.

  4. 4.

    can be assumed to be sparse since it represents quantities—e.g. electron density or electrostatic potential—that are highly localized at the atomic positions of the crystal structure.

  5. 5.

    The continuous wavelet transform is calculated using the cwt function in MATLAB R2017b where the wavelet is chosen to be the default ‘Morse’ wavelet [325, 403], named for American physicist Philip M. Morse (1903–1985) who first derived it as the solution to the Schrödinger wave equation with his eponymous potential energy function [379].

  6. 6.

    See Refs. [47, 84] and the references therein.

References

  1. U.W. Arndt, A.J. Wonacott (eds.), The Rotation Method in Crystallography: Data Collection from Macromolecular Crystals (Elsevier/North-Holland Biomedical Press, Amsterdam, 1977)

    Google Scholar 

  2. U.W. Arndt, J.N. Champness, R.P. Phizackerley, A.J. Wonacott, A single-crystal oscillation camera for large unit cells. J. Appl. Cryst. 6, 457–463 (1973)

    Google Scholar 

  3. G. Auböck, M. Chergui, Sub-50-fs photoinduced spin crossover in [FeII(bpy)3]2+. Nat. Chem. 7, 629–633 (2015)

    Google Scholar 

  4. R. Bertoni, M. Cammarata, M. Lorenc, S.F. Matar, J.-F. Létard, H.T. Lemke, E. Collet, Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res. 48, 774–781 (2015)

    Google Scholar 

  5. B. Brachňaková, I. Šalitroš, Ligand-driven light-induced spin transition in spin crossover compounds. Chem. Pap. 72, 773–448 (2018)

    Google Scholar 

  6. C. Bressler, C. Milne, V.T. Pham, A. ElNahhas, R.M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C.N. Borca, G. Ingold, R. Abela, M. Chergui, Femtosecond XANES study of the light-induced spin crossover dynamics of an iron(II) complex. Science 323, 489–492 (2009)

    ADS  Google Scholar 

  7. M.J. Buerger, The Precession Method in X-ray Crystallography (Wiley, New York, 1964)

    Google Scholar 

  8. M. Cammarata, R. Bertoni, M. Lorenc, H. Cailleau, S. Di Matteo, C. Mauriac, S.F. Matar, H. Lemke, M. Chollet, S. Ravy, C. Laulhé, J.-F. Létard, E. Collet, Sequential activation of molecular breathing and bending during spin-crossover photoswitching revealed by femtosecond optical and X-ray absorption spectroscopy. Phys. Rev. Lett. 113, 227402 (2014)

    ADS  Google Scholar 

  9. G. Chastanet, M. Lorenc, R. Bertoni, C. Desplanches, Light-induced spin crossover — solution and solid-state processes. C. R. Chim. 21, 1075–1094 (2018)

    Google Scholar 

  10. S. Dick, Crystal structure of tris(2,2-bipyridine)iron(II) bis(hexafluorophosphate), (C10H8N2)3Fe(PF6)2. Z. Kristallogr. New Cryst. Struct. 213, 356 (1998)

    Google Scholar 

  11. A. Eggeman, T. White, P. Midgley, Symmetry-modified charge flipping. Acta Cryst. A 65, 120–127 (2009)

    Google Scholar 

  12. R.L. Field, L. Liu, W. Gawelda, C. Lu, R.J.D. Miller, Spectral signatures of ultrafast spin crossover in single crystal [FeII(bpy)3](PF6)2. Chem. Eur. J. 22, 5118–5122 (2016)

    Google Scholar 

  13. B. Freyer, J. Stingl, F. Zamponi, M. Woerner, T. Elsaesser, The rotation-crystal method in femtosecond X-ray diffraction. Opt. Express 19, 15506–15515 (2011)

    ADS  Google Scholar 

  14. B. Freyer, F. Zamponi, V. Juvé, J. Stingl, M. Woerner, T. Elsaesser, M. Chergui, Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138, 144504 (2013)

    ADS  Google Scholar 

  15. W. Gawelda, V.-T. Pham, M. Benfatto, Y. Zaushitsyn, Maik Kaiser, D. Grolimund, S.L. Johnson, R. Abela, A. Hauser, C. Bressler, M. Chergui, Structural determination of a short-lived excited iron(II) complex by picosecond X-ray absorption spectroscopy. Phys. Rev. Lett. 98, 057401 (2007)

    Google Scholar 

  16. C. Giacovazzo, H. Monaco, G. Artioli, D. Viterbo, M. Milanesio, G. Gilli, P. Gilli, G. Zanotti, G. Ferraris, M. Catti, Fundamentals of Crystallography, ed. by C. Giacovazzo (Oxford University Press, New York, 2011)

    Google Scholar 

  17. K. Haldrup, G. Vankó, W. Gawelda, A. Galler, G. Doumy, A.M. March, E.P. Kanter, A. Bordage, A.O. Dohn, T.B. van Driel, K.S. Kjær, H.T. Lemke, S.E. Canton, J. Uhlig, V. Sundström, L. Young, S.H. Southworth, M.M. Nielsen, C. Bressler, Guest–host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: solvation dynamics and photoinduced spin transition in aqueous \(\mathrm {Fe(bipy)}_3^{2+}\). J. Phys. Chem. A 116, 9878–9887 (2012)

    Google Scholar 

  18. K. Haldrup, W. Gawelda, R. Abela, R. Alonso-Mori, U. Bergmann, A. Bordage, M. Cammarata, S.E. Canton, A.O. Dohn, T.B. van Driel, D.M. Fritz, A. Galler, P. Glatzel, T. Harlang, K.S. Kjær, H.T. Lemke, K.B. Møller, Z. Németh, M. Pápai, N. Sas, J. Uhlig, D. Zhu, G. Vankó, V. Sundström, M.M. Nielsen, C. Bressler, Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120, 1158–1168 (2016)

    Google Scholar 

  19. M. Harb, W. Peng, G. Sciaini, C.T. Hebeisen, R. Ernstorfer, M.A. Eriksson, M.G. Lagally, S. Kruglik, R.J.D. Miller, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si. Phys. Rev. B 79, 094301 (2009)

    ADS  Google Scholar 

  20. S. Hovmöller, Electron Rotation Camera (2008)

    Google Scholar 

  21. K.S. Kjær, K.J. Gaffney, Finding intersections between electronic excited states with ultrafast X-ray scattering and spectroscopy, in Frontiers in Optics 2017 (Optical Society of America, Washington, 2017), LM2F.1

    Google Scholar 

  22. U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert, Towards automated diffraction tomography: Part I — data acquisition. Ultramicroscopy 107, 507–513 (2007)

    Google Scholar 

  23. U. Kolb, T. Gorelik, M.T. Otten, Towards automated diffraction tomography: Part II — cell parameter determination. Ultramicroscopy 108, 763–772 (2008)

    Google Scholar 

  24. L. Lawson Daku, A. Hauser, Ab initio molecular dynamics study of an aqueous solution of [Fe(bpy)3](Cl)2 in the low-spin and in the high-spin states. J. Phys. Chem. Lett. 1, 1830–1835 (2010)

    Google Scholar 

  25. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    ADS  Google Scholar 

  26. H.T. Lemke, K.S. Kjær, R. Hartsock, T.B. van Driel, M. Chollet, J.M. Glownia, S. Song, D. Zhu, E. Pace, S.F. Matar, M.M. Nielsen, M. Benfatto, K.J. Gaffney, E. Collet, M. Cammarata, Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Commun. 8, 15342 (2017)

    ADS  Google Scholar 

  27. J. M. Lilly, S.C. Olhede, Generalized morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Process. 60, 6036–6041 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  28. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. (Elsevier, Burlington, 2009)

    MATH  Google Scholar 

  29. A. Marino, M. Servol, R. Bertoni, M. Lorenc, C. Mauriac, J.-F. Létard, E. Collet, Femtosecond optical pump–probe reflectivity studies of spin-state photo-switching in the spin-crossover molecular crystals [Fe(PM − AzA)2(NCS)2]. Polyhedron 66, 123–128 (2013)

    Google Scholar 

  30. A. Marino, M. Cammarata, S.F. Matar, J.-F. Létard, G. Chastanet, M. Chollet, J.M. Glownia, H.T. Lemke, E. Collet, Activation of coherent lattice phonons following ultrafast molecular spin-state photo-switching: a molecular-to-lattice energy transfer. Struct. Dyn. 3, 023605 (2016)

    Google Scholar 

  31. M. Milek, F.W. Heinemann, M.M. Khusniyarov, Spin crossover meets diarylethenes: efficient photoswitching of magnetic properties in solution at room temperature. Inorg. Chem. 52, 11585–11592 (2013)

    Google Scholar 

  32. P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    MATH  Google Scholar 

  33. E. Mugnaiolia, Closing the gap between electron and X-ray crystallography. Acta Cryst. B 71, 737–739 (2015)

    Google Scholar 

  34. E. Mugnaiolia, T. Gorelik, U. Kolb, ”Ab Initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758–765 (2009)

    Google Scholar 

  35. M. Nihei, N. Takahashi, H. Nishikawa, H. Oship, Spin-crossover behavior and electrical conduction property in iron(II) complexes with tetrathiafulvalene moieties. Dalton Trans. 40, 2154–2156 (2011)

    Google Scholar 

  36. S.C. Olhede, A.T. Walden, Generalized morse wavelets. IEEE Trans. Signal Process. 50, 2661–2670 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  37. G. Oszlányi, A. Sütő, Ab initio structure solution by charge flipping. Acta Cryst. A 60, 134–141 (2004)

    Google Scholar 

  38. G. Oszlányi, A. Sütő, Ab initio structure solution by charge flipping. II. Use of weak reflections. Acta Cryst. A 61, 147–152 (2005)

    Google Scholar 

  39. G. Oszlányi, A. Sütő, Ab initio neutron crystallography by the charge flipping method. Acta Cryst. A 63, 156–163 (2007)

    Google Scholar 

  40. G. Oszlányi, A. Sütő, The charge flipping algorithm. Acta Cryst. A 64, 123–134 (2008)

    Google Scholar 

  41. G. Oszlányi, A. Sütő, A charge-flipping algorithm to handle incomplete data. Acta Cryst. A 67, 284–291 (2011)

    Google Scholar 

  42. L. Palatinus, The charge-flipping algorithm in crystallography. Acta Cryst. B 69, 1–16 (2013)

    Google Scholar 

  43. L. Palatinus, G. Chapuis, SUPERFLIP — A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 40, 786–790 (2007)

    Google Scholar 

  44. L. Palatinus, S.J. Prathapa, S. van Smaalen, EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Cryst. 45, 575–580 (2012)

    Google Scholar 

  45. L. Palatinus, D. Jacob, P. Cuvillier, M. Klementová, W. Sinkler, L.D. Marks, Structure refinement from precession electron diffraction data. Acta Cryst. A 69, 171–188 (2013)

    Google Scholar 

  46. L. Palatinus, P. Václav, C.A. Corrêa, Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Cryst. A 71, 235–244 (2015)

    Google Scholar 

  47. L. Palatinus, C.A. Corrêa, G. Steciuk, D. Jacob, P. Roussel, P. Boullay, M. Klementová, M. Gemmi, J. Kopeček, M.C. Domeneghetti, F. Cámara, P. Václav, Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Cryst. B 71, 740–751 (2015)

    Google Scholar 

  48. L. Palatinus, P. Brázda, P. Boullay, O. Perez, M. Klementová, S. Petit, V. Eigner, M. Zaarour, S. Mintova, Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017)

    ADS  Google Scholar 

  49. L.S. Refaat, M.M. Woolfson, Direct-space methods in phase extension and phase determination. II. Development of low-density elimination. Acta Cryst. D 49, 367–371 (1993)

    Google Scholar 

  50. M. Schmidt, S. Rajagopal, Z. Ren, K. Moffat, Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys. J. 84, 2112–2129 (2003)

    ADS  Google Scholar 

  51. P. J. Shaw, G.J. Hills, Titled specimen in the electron microscope: a simple specimen holder and the calculation of tilt angles for crystalline specimens. Micron 12, 279–282 (1981)

    Google Scholar 

  52. M. Shiono, M.M. Woolfson, Direct-space methods in phase extension and phase determination. I. Low-density elimination. Acta Cryst. A 48, 451–456 (1992)

    Google Scholar 

  53. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J. Appl. Phys. 92, 1643–1648 (2002)

    ADS  Google Scholar 

  54. S. Venkataramani, U. Jana, M. Dommaschk, F.D. Sónnichsen, F. Tuczek, R. Herges, Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2011)

    ADS  Google Scholar 

  55. W. Wan, J. Sun, J. Sun, S. Hovmöller, X. Zou, Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Cryst. 46, 1863–1873 (2013)

    Google Scholar 

  56. M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, E.W. Myers, Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Met. 15, 1090–1097 (2018)

    Google Scholar 

  57. J. C. Williamson, A.H. Zewail, Ultrafast electron diffraction: velocity mismatch and temporal resolution in crossed-beam experiments. Chem. Phys. Lett. 209, 10–16 (1993)

    ADS  Google Scholar 

  58. B.-H. Xuong, J. Kraut, O. Seely, S.T. Freer, C.S. Wright, Rapid measurement of large numbers of reflection intensities for proteins. Acta Cryst. B 24, 289–290 (1969)

    Google Scholar 

  59. D. Zhang, P. Oleynikov, S. Hovmöller, X. Zou, Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010)

    Google Scholar 

  60. W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R.G. Hadt, R.W. Hartsock, T. Kroll, K.S. Kjæ, K. Kubiček, H.T. Lemke, H.W. Liang, D.A. Meyer, M.M. Nielsen, C. Purser, J.S. Robinson, E.I. Solomon, Z. Sun, D. Sokaras, T.B. van Driel, G. Vankó, T.-C. Weng, D. Zhu, K.J. Gaffney, Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014)

    ADS  Google Scholar 

  61. X. Zou, S. Hovmöller, P. Oleynikov, Electron Crystallography (Oxford University Press, Oxford, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Future Work. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_6

Download citation

Publish with us

Policies and ethics