Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Some transition-metal complexes can change spin states under certain perturbation of their environment. This process is called spin crossover (SCO) and this chapter is focused on its role in the light-induced dynamics of two iron(II) compounds: [FeII(bpy)3](PF6)2 and [FeII(PM-AzA)2(NCS)2], abbreviated herein to BPY and AZA respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Linus Carl Pauling (1901–1994) was awarded the 1954 Nobel Prize in Chemistry for his research on the nature of the chemical bond [399].

  2. 2.

    Transition-metal complexes are chemical compounds that are formed by various molecules attaching to a central transition-metal atom via coordination bonds; the coordinating molecules are referred to as ‘ligands’ [58].

  3. 3.

    In the case of iron(III) in [FeIIIL6]3+, the five electrons in the 3d orbitals are either all unpaired or paired twice with one left; the former is the ‘high-spin’ (HS) state, with total spin quantum number \(S = \frac {5}{2}\); the latter is the ‘low-spin’ (LS) state, with \(S = \frac {1}{2}\).

  4. 4.

    These were a homologuous series of tris(N,N’-dialkyldithiocarbamate)iron(III) derivatives, (R2NCS2)FeIII where R = CnH2n+1.

  5. 5.

    Named after Pierre Curie (1859–1906) and Pierre-Ernest Weiss (1865–1940), this law describes the magnetic susceptibility χ of a material as a function of its temperature T: χ = χ 0 + C(TT C)γ, where χ 0, C, T W, γ are the Pauli susceptibility, Curie constant, Weiss temperature, and critical exponent [13, 398].

  6. 6.

    British chemist Leslie E. Orgel (1927–2007) is most known for his early application of LFT to transition metal chemistry and later proposal of the ‘RNA World’ hypothesis for the origin of life on Earth [271, 408].

  7. 7.

    German physicist Rudolf Ludwig Mössbauer (1929–2011) carried out the first experimental observation of recoilless nuclear resonance absorption of gamma rays in 1955–1957 [380]; this discovery earned him a share of the 1961 Nobel Prize in Physics [399].

  8. 8.

    The first excited state of the 57Fe nucleus has a non-zero electric quadrupole moment which gives rise to a doublet in its Mössbauer absorption spectrum; this splitting, ΔE Q, is narrowed in the LS electronic configuration due to depopulation of metal–ligand orbitals and thus reduced anisotropy of the electric-field gradient [196].

  9. 9.

    Note that, for two spin states to be spectrally resolved, it is necessary that: (1) the relaxation time for the \(\text{LS} \rightleftharpoons \text{HS}\) fluctuation is longer than the half-life of the nuclear isomer used (t 1∕2 = 98.3 ns for 57Fe) and (2) their Lamb-Mössbauer factors f HS, f LS are equal [197].

  10. 10.

    See footnote 36.

  11. 11.

    Friedrich Hund (1896–1997) formulated three simple empirical rules to determine the ground electronic state of an atom: maximize S and L while minimizing J, where S, L, J are the total spin, orbital, and net angular momentum numbers [234].

  12. 12.

    Japanese chemist Tsuchida Ryutaro (1903–1962) measured the absorption spectra of several transition-metal complexes and concluded that ligand substitution can modulate the energy of electronic transitions [462, 463]; the approximate sequence at which this occurs in increasing order is known as the spectrochemical series: I, Br, SCN, Cl, NO\(_3^-\), N\(_3^-\), F, OH, OH2, NCS, NH3, py, en, bpy, phen, NO\(_2^-\), PPh3, CN, CO, NO+ [161].

  13. 13.

    John H. van Vleck (1899–1980) was awarded the 1977 Nobel Prize in Physics, along with Philip W. Anderson and Nevill F. Mott (see footnote 36), for his work on the electronic structure of magnetic materials [336].

  14. 14.

    Friedrich Hund (see footnote 11), Robert S. Mulliken (1896–1986), and others calculated the electron wavefunctions of a molecule as a linear combination of those of the constituent atoms; Mulliken was awarded the 1966 Nobel Prize in Chemistry for his contribution [401].

  15. 15.

    The anti-or non-bonding nature of an MO is denoted by an ‘n’ or asterisk to the right of its term symbol in superscript.

  16. 16.

    For a typical FeIIN6-type SCO complex, r LS ≈ 2.0 Å and r HS ≈ 2.2 Å [409, 478].

  17. 17.

    Yukito Tanabe (1927–present) and Satoru Sugano (1928–present) calculated the electronic ground- and excited-state energy of all possible electronic configurations of the 3d orbitals and plotted them in diagrams that clearly explain the absorption spectra of various transition-metal complexes [508,509,510].

  18. 18.

    Dutch physical chemist Jacobus H. van’t Hoff (1852–1911) was awarded in 1901 the first Nobel prize in chemistry for his contributions to chemical thermodynamics, one of which is this formula on the temperature dependence of the equilibrium constant of a simple mixture of chemical species [398].

  19. 19.

    Josiah Willard Gibbs (1839–1903) was an American mathematical physicist whose contributions include statistical mechanics and, in particular, the concept of ‘available energy’ at constant volume and temperature [210].

  20. 20.

    From temperature-dependent XRD measurements of several Fe(II) SCO systems, the \(\text{LS} \rightleftharpoons \text{HS}\) volume contraction associated with the spin transition is about 1.5–2.5 % [193, 198].

  21. 21.

    Laser Raman temperature jump is a technique used for studying fast chemical reactions in solution; it involves an impulsive heating of the spectating solvent by a ns near-IR pulse from a Q-switched neodymium-doped glass laser, Raman-shifted from 1.41-μm to 1.41-μm to match the wavelength of the first overtone of the O–H stretch [525].

  22. 22.

    FeII(biz)\(_3^{2+}\), FeII(ppa)\(_2^{2+}\), and FeII(pyimH)\(_3^{2+}\) in water and acetonitrile–methanol, where biz = 2,2-bi-1,4,5,6-tetrahydropyrimidine, ppa = N 2-(2-pyridylmethyl)picolinamidine, and pyimH = 2-(2-pyridylimidazole) [359].

  23. 23.

    Gallé et al. [170] showed that photoexcitation to the 5MLCT band can also lead to rLIESST.

  24. 24.

    Electronic transitions with ΔS ≠ 0 (and ΔL = 0) are prima facie forbidden since the corresponding transition moment integrals are identically zero by symmetry [209].

  25. 25.

    Through this formula [12], Swedish physicist Svante A. Arrhenius (1859–1927) related the temperature dependence of the rate of a chemical reaction to the concepts of activation energy and Boltzmann distribution; for related work, he was awarded the 1903 Nobel Prize in Chemistry [398].

  26. 26.

    This quantity is named after physicist-couple Kun Huang (1919–2005) and Avril Rhys (1928–present), who first introduced it in their seminal work [232].

  27. 27.

    From Ref. [198], \(|\langle \psi _{\text{HS}} | \hat {H}_{\text{SO}} |\psi _{\text{HS}} \rangle | \approx 150\) cm−1, ħω ≈ 250 cm−1, Δr HL ≈ 0.2 Å, k ≈ 200 N/m, S ≈ 45, \(\Delta S_{\text{HL}}^{(0)} \approx 5\) cm−1/K.

  28. 28.

    See footnote 3.

  29. 29.

    The absorption spectrum of the 5T2g state (or any of the other excited states) is not known a priori for Fe(II) complexes like [FeII(bpy)3]2+ since they do not exhibit thermal SCO. To assign the ESA in their TA data, the authors [49, 376, 574] used the change in absorbance ΔA(λ) due to electrochemical oxidation ([FeIIL3]2+ → [FeIIIL3]3+) and reduction ([FeIIL3]2+ → [FeIIL2(L)]1+) as a proxy for that expected of the 1MLCT state, which is purportedly the result of \((\mathrm {t}_{2\mathrm {g}})^6 (\mathrm {e}_{\mathrm {g}^*})(\mathrm {L} \uppi ^*) \rightarrow (\mathrm {t}_{2\mathrm {g}})^5 (\mathrm {e}_{\mathrm {g}^*})(\mathrm {L} \uppi ^*)^1\).

  30. 30.

    Canadian chemist Rudolph A. Marcus (1923–present) developed in 1956 a theory of electron transfer amongst molecules which predicts that the rate constant k of such reactions do not increased monotonically with the total Gibbs free energy ΔG but has a Gaussian dependence [344, 348].

  31. 31.

    The evolution into the 3MLCT state happens to be much more easily observable in [RuII(bpy)3]2+ because of its strong luminescence and very long lifetime (τ = 630 ns at 298 K in water), properties made possible by the fact that Δoct(Ru) ≈ 2 Δoct(Fe) for a given ligand (see Table H.1 in Appendix H) and the ligand-field excited states are thus too high in energy to effectively quench the MLCT states [214, 517].

  32. 32.

    No vibrational feature characteristic of the 1MLCT state is observed at early times in Ref. [489] since it is very short-lived (\(\lesssim \)20 fs) and is associated with large lifetime spectral broadening (500 cm−1) [310].

  33. 33.

    The first observation of an X-ray absorption edge was made in 1913 by French experimental physicist Maurice de Broglie (1875–1960), the elder brother of Louis de Broglie (see footnote 35). For a detailed historical account of XAS, see Refs. [338, 546].

  34. 34.

    XANES is also called NEXAFS or near-edge X-ray absorption fine structure [546].

  35. 35.

    See Ref. [450] for a more thorough overview on the theory of EXAFS and XANES.

  36. 36.

    Of interest are the works in Refs. [88, 89, 175, 369, 464, 516, 527], where the ms–ps photoinduced dynamics of several transition metal complexes were probed by time-resolved XAS.

  37. 37.

    At least within the IRF of these measurements, which is τ IRF ≈ 110–250 fs FWHM.

  38. 38.

    German-American physicist Otto Laporte (1902–1971) recognized that electronic transitions in molecules with an inversion centre only occur if Δ = ±1 [115, 209, 315].

  39. 39.

    There are two competing notations for X-ray spectral lines: Siegbahn and IUPAC. For example, emission from transitions from the M3, M2 levels to the K level is denoted by Kβ1,3 or K-M3,2 [264]. Note that ‘Siegbahn’ refers to Swedish physicist Manne Siegbahn (1886–1978), who won the 1924 Nobel Prize in Physics for his work in X-ray spectroscopy [14].

  40. 40.

    Iron coordination complexes of different ground-state spin moments stand in for possible excited-state spin configurations of BPY: [FeIII(bpy)3]3+ (doublet, S = 1∕2), [FeIIPc] (triplet, S = 1), [FeII(phen)2(NCS)2] (quintet, S = 2); Pc2− = phthalocyanine (C32H16N8).

  41. 41.

    Wavelength λ, beamwidth w on the sample, pulse duration τ, and energy E (see Appendix K).

  42. 42.

    Four species could be spectrally resolved: solvated electrons \(\mathrm {e}^-_{\text{aq}}\), the 3MLCT excited state [RuIII(bpy)2(bpy)]2+ the reduced ion [RuII(bpy)2(bpy⋅−)]+, and the oxidized ion [RuIII(bpy)3]3+.

  43. 43.

    From kinetic considerations (Eq. (5.5)), a LS—HS equilibrium temperature of [FeII(bpy)3]2+ can be estimated to be ca. 700 K; however, it is purely theoretical since the molecule would have thermochemically dissociated already [198].

  44. 44.

    Sapphire is chosen here for its high thermal conductivity, which allows laser-deposited heat to dissipate in between laser shots.

  45. 45.

    Absorption of an isotropic sample after photoexcitation is given by \(\Delta A(t, \beta ) \propto N(t) [ 1 + (3 \cos ^2 \beta - 1) R(t) ]\), where N(t), R(t), and β are respectively the excited-state population, the alignment of the transition dipoles, and the relative pump–probe polarization angle. Setting \(\beta = \arccos \frac {1}{\sqrt {3}}\) eliminates the contribution of dipole-alignment relaxation [162].

  46. 46.

    See Fig. L.1 in Appendix L for plots of these principal components.

  47. 47.

    Caveat: depending on the relative polarization of the probe.

  48. 48.

    See Fig. L.2 in Appendix L for plots of the principal components.

  49. 49.

    To avoid noise, GSA” is evaluated numerically by calculating the double finite difference of not the measured GSA values directly but an analytical approximation generated by Voigt fitting [1].

  50. 50.

    Johannes Stark (1874–1919) found that an external electric field can shift the spectral lines of an atom by coupling with its electric dipole moment; for this discovery, he was awarded the 1919 Nobel Prize in Physics [398].

  51. 51.

    \(v = \frac {1}{c \epsilon }(\frac {\Delta T}{\Delta A})\), where v is the speed of sound, \(\frac {\Delta T}{\Delta A}\) is the period/absorbance linear slope, c = 2.13 M and 𝜖 = 9160 M−1 cm−1 are the molar concentration and absorptivity at 533 nm of single-crystal BPY; B = ρv 2, where B and ρ = 1.73 g/cm3 are its bulk modulus and density.

  52. 52.

    In some older works [116, 288], much longer lifetimes—(810 ± 70), (830 ± 70) ps—were described under similar conditions (aqueous BPY at room temperature).

  53. 53.

    See footnote 20.

  54. 54.

    Note that there is a gross mismatch between the volume values in Tab. 1 of Ref. [467] and those plotted in all subsequent referencing figures (e.g. Refs. [198, 216,217,218]).

  55. 55.

    In Appendix C, the unit cell volume of BPY is given as 1561.4 Å3 from Ref. [127]. The present value is calculated for an unit cell that has undergone a coordinate transformation () to match the one in Ref. [467].

  56. 56.

    cis-bis(isothiocyanato)bis[(N-2-pyridylmethylene)- 4-(phenylazo)aniline]iron(II).

  57. 57.

    A Schiff base—named after German-Italian chemist Hugo Schiff (1834–1915)—is a molecule that is formed by reacting an amine (R–NH2) with an aldehyde (R–(CO)–H) or a ketone (R–(CO)–R′); a diimine is a compound with two imine (R,R′–C=N–R″) groups [202, 468].

  58. 58.

    Several pump wavelengths have been used to induce SCO in AZA: 400 nm[431], 647.1–676.4 nm [74, 324], 800 nm [269, 353], 830 nm [353], and 850 nm [350].

  59. 59.

    At 110 K and 300 K respectively, as determined by Guionneau et al. [193] using XRD.

  60. 60.

    There are some reports of much slower IVR time constants (ca. 8–10 ps) that could be explained by the absence of more efficient relaxation pathways in those systems [376, 489].

References

  1. S.M. Abrarov, B.M. Quine, Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation. Appl. Math. Comput. 218, 1894–1902 (2011)

    MathSciNet  MATH  Google Scholar 

  2. B.D. Alexander, T.J. Dines, R.W. Longhurst, DFT calculations of the structures and vibrational spectra of the [Fe(bpy)3]2+ and [Ru(bpy)3]2+ complexes. Chem. Phys. 352, 19–27 (2008)

    Google Scholar 

  3. M. Alflen, C. Hennen, F. Tuczek, H. Spiering, P. Gütlich, Z. Kajcsos, Time-differential Mössbauer emission spectroscopy: development of a new spectrometer and first results. Hyperfine Interact. 47, 115–126 (1989)

    ADS  Google Scholar 

  4. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1999)

    ADS  Google Scholar 

  5. S.A. Arrhenius, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4, 96–116 (1889)

    Google Scholar 

  6. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  7. H. Atterling, Karl Manne Georg Siegbahn. Biogr. Mems Fell. R. Soc. 37, 427–444 (1991)

    Google Scholar 

  8. G. Auböck, M. Chergui, Sub-50-fs photoinduced spin crossover in [FeII(bpy)3]2+. Nat. Chem. 7, 629–633 (2015)

    Google Scholar 

  9. W.A. Baker Jr., H.M. Bobonich, Magnetic properties of some high-spin complexes of iron(II). Inorg. Chem. 3, 1184–1188 (1964)

    Google Scholar 

  10. P. Barth, G. Schmauss, H. Specker, Über Eisen(II)-Komplexe substituierter 2-Pyridinalphenylimine. Z. Naturforsch. B 27, 1149–1154 (1972)

    Google Scholar 

  11. J.K. Beattie, N. Sutin, D.H. Turner, G.W. Flynn, Rate of intersystem crossing between 1A and 5A of an iron(II) complex in solution. J. Am. Chem. Soc. 95, 2052–2054 (1973)

    Google Scholar 

  12. M. Benfatto, A. Congiu-Castellano, A. Daniele, S.D. Longa, MXAN: a new software procedure to perform geometrical fitting of experimental XANES spectra. J. Synchrotron Radiat. 8, 267–269 (2001)

    Google Scholar 

  13. M.A. Bergkamp, C.-K. Chang, T.L. Netzel, Quantum yield determinations for sub-nanosecond-lived excited states and photoproducts. Application to inorganic complexes and photosynthetic models. J. Phys. Chem. 87, 4441–4446 (1983)

    Google Scholar 

  14. R. Bertoni, M. Lorenc, A. Tissot, M. Servol, M.-L. Boillot, E. Collet, Femtosecond spin-state photoswitching of molecular nanocrystals evidenced by optical spectroscopy. Angew. Chem. Int. Ed. 51, 7485–7489 (2012)

    Google Scholar 

  15. R. Bertoni, M. Cammarata, M. Lorenc, S.F. Matar, J.-F. Létard, H.T. Lemke, E. Collet, Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res. 48, 774–781 (2015)

    Google Scholar 

  16. R. Bertoni, M. Lorenc, H. Cailleau, A. Tissot, J. Laisney, M.-L. Boillot, L. Stoleriu, A. Stancu, C. Enachescu, E. Collet, Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 15, 606–610 (2016)

    ADS  Google Scholar 

  17. R. Bertoni, M. Lorenc, H. Cailleau, A. Tissot, J. Laisney, M.-L. Boillot, L. Stoleriu, A. Stancu, C. Enachescu, E. Collet, Cooperative elastic switching vs. laser heating in [Fe(phen)2(NCS)2] spin-crossover crystals excited by a laser pulse. CrystEngComm 18, 7269–7275 (2016)

    Google Scholar 

  18. H. Bethe, Termaufspaltung in Kristallen. Ann. Phys. 3, 133 (1929)

    Google Scholar 

  19. A.C. Bhasikuttan, M. Suzuki, S. Nakashima, T. Okada, Ultrafast fluorescence detection in tris(2,2-bipyridine)ruthenium(II) complex in solution: relaxation dynamics involving higher excited states. J. Am. Chem. Soc. 124, 8398–8405 (2002)

    Google Scholar 

  20. E. Biasin, T.B. van Driel, K.S. Kjær, A.O. Dohn, M. Christensen, T. Harlang, P. Chabera, Y. Liu, J. Uhlig, M. Pápai, Z. Németh, R. Hartsock, W. Liang, J. Zhang, R. Alonso-Mori, M. Chollet, J.M. Glownia, S. Nelson, D. Sokaras, T.A. Assefa, A. Britz, A. Galler, W. Gawelda, C. Bressler, K.J. Gaffney, H.T. Lemke, K.B. Møller, M.M. Nielsen, V. Sundström, G. Vankó, K. Wärnmark, S.E. Canton, K. Haldrup, Femtosecond X-ray scattering study of ultrafast photoinduced structural dynamics in solvated [Co(terp)2]2+. Phys. Rev. Lett. 117, 013002 (2016)

    Google Scholar 

  21. C. Bizzarri, E. Spuling, D.M. Knoll, D. Volz, S. Bräse, Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 373, 49–82 (2018)

    Google Scholar 

  22. S.J. Blundell, F.L. Pratt, C.A. Steer, I.M. Marshall, J.-F. Létard, A μSR study of the spin-crossover. J. Phys. Chem. Solids 65, 25–28 (2004)

    ADS  Google Scholar 

  23. R. Boča, M. Vrbová, R. Werner, W. Haase, Spin crossover in iron(II) tris(2-(2-pyridyl)benzimidazole) complex monitored by the variable temperature EXAFS. Chem. Phys. Lett. 328, 188–196 (2000)

    ADS  Google Scholar 

  24. K. Bode, P. Gütlich, H. Köppen, Mössbauer effect study of the electronic ground state of iron(II) in \([^{57}\mathrm {Fe}^{\mathrm {II}}_x \mathrm {M}^{\mathrm {II}}_{1 - x} \mathrm {(bpy)}_3] (\mathrm {ClO}_4)_2\) (M = Mn, Ni, Zn) and \([^{57}\mathrm {Fe}^{\mathrm {II}}_x \mathrm {M}^{\mathrm {II}}_{1 - x} (\mathrm {phen})_3] (\mathrm {ClO}_4)_2\) (M = Ni, Zn) at very low iron concentrations (\(x \lesssim 0.005\)). Inorg. Chim. Acta 42, 281–284 (1980)

    Google Scholar 

  25. M.-L. Boillot, J. Zarembowitch, J.-P. Itié, A. Polian, E. Bourdet, J. G. Haasnoot, Pressure-induced spin-state crossovers at room temperature in iron(II) complexes: comparative analysis; a XANES investigation of some new transitions. New J. Chem. 26, 313–322 (2002)

    Google Scholar 

  26. B. Bozic-Weber, E.C. Constable, C.E. Housecroft, Light harvesting with earth abundant d-block metals: development of sensitizers in dye-sensitized solar cells (DSCs). Coord. Chem. Rev. 257, 3089–3106 (2013)

    Google Scholar 

  27. W.W. Brandt, F.P. Dwyer, E.D. Gyarfas, Chelate complexes of 1,10-phenanthroline and related compounds. Chem. Rev. 54, 959–1017 (1954)

    Google Scholar 

  28. P.S. Braterman, J.-I. Song, R.D. Peacock, Electronic absorption spectra of the iron(II) complexes of 2,2-bipyridine, 2,2-bipyrimidine, 1,10-phenanthroline, and 2,2:6,  2-terpyridine and their reduction products. Inorg. Chem. 31, 555–559 (1992)

    Google Scholar 

  29. N. Bréfuel, H. Watanabe, L. Toupet, J. Come, N. Matsumoto, E. Collet, K. Tanaka, J.-P. Tuchagues, Concerted spin crossover and symmetry breaking yield three thermally and one light-induced crystallographic phases of a molecular material. Angew. Chem. Int. Ed. 48, 9304–9307 (2009)

    Google Scholar 

  30. N. Bréfuel, E. Collet, H. Watanabe, M. Kojima, N. Matsumoto, L. Toupet, K. Tanaka, J.-P. Tuchagues, Nanoscale self-hosting of molecular spin-states in the intermediate phase of a spin-crossover material. Chem. Eur. J. 16, 14060–14068 (2010)

    Google Scholar 

  31. C. Bressler, M. Chergui, Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004)

    Google Scholar 

  32. C. Bressler, M. Chergui, Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy,” Annu. Rev. Phys. Chem. 61, 263–282 (2010)

    Google Scholar 

  33. C. Bressler, R. Abela, M. Chergui, Exploiting EXAFS and XANES for time-resolved molecular structures in liquids. Z. Kristallogr. 223, 307–321 (2008)

    Google Scholar 

  34. C. Bressler, C. Milne, V.T. Pham, A. ElNahhas, R.M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C.N. Borca, G. Ingold, R. Abela, M. Chergui, Femtosecond XANES study of the light-induced spin crossover dynamics of an iron(II) complex. Science 323, 489–492 (2009)

    ADS  Google Scholar 

  35. V. Briois, C. Cartier dit Moulin, P. Sainctavit, C. Brouder, A.-M. Flank, Full multiple scattering and crystal field multiplet calculations performed on the spin transition FeII(phen)2(NCS)2 complex at the iron K and L2,3 X-ray absorption edges. J. Am. Chem. Soc. 117, 1019–1026 (1995)

    Google Scholar 

  36. V. Briois, P. Sainctavit, G.J. Long, F. Grandjean, Importance of photoelectron multiple scattering in the iron K-edge X-ray absorption spectra of spin-crossover complexes: full multiple scattering calculations for several iron(II) trispyrazolylborate and trispyrazolylmethane complexes. Inorg. Chem. 40, 912–918 (2001)

    Google Scholar 

  37. W.H. Brock, K.A. Jensen, C.K. Jøorgensen, G.B. Kauffman, The origin and dissemination of the term “Ligand” in chemistry. Polyhedron 2, 1–7 (1983)

    Google Scholar 

  38. E. Buhks, G. Navon, M. Bixon, and J. Jortner, Spin conversion processes in solutions. J. Am. Chem. Soc. 102, 2918–2923 (1980)

    Google Scholar 

  39. H. Cailleau, M. Lorenc, L. Guérin, M. Servol, E. Collet, M. Buron-Le Cointe, Structural dynamics of photoinduced molecular switching in the solid state. Acta Crystallogr. A 66, 133–134 (2010)

    ADS  Google Scholar 

  40. S. Calvin, XAFS for Everyone, 1st edn. (CRC Press, Boca Raton, 2013)

    Google Scholar 

  41. L. Cambi, L. Szegö, Über die magnetische Susceptibilität der komplexen Verbindungen. Ber. Deutsch Chem. Ges. 64, 259 (1931)

    Google Scholar 

  42. L. Cambi, L. Szegö, Über die magnetische Susceptibilität der komplexen Verbindungen (II. Mitteil.). Ber. Deutsch Chem. Ges. 66, 656 (1933)

    Google Scholar 

  43. M. Cammarata, R. Bertoni, M. Lorenc, H. Cailleau, S. Di Matteo, C. Mauriac, S.F. Matar, H. Lemke, M. Chollet, S. Ravy, C. Laulhé, J.-F. Létard, E. Collet, Sequential activation of molecular breathing and bending during spin-crossover photoswitching revealed by femtosecond optical and X-ray absorption spectroscopy. Phys. Rev. Lett. 113, 227402 (2014)

    ADS  Google Scholar 

  44. A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, M. Chergui, Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew. Chem. Int. Ed. 45, 3174–3176 (2006)

    Google Scholar 

  45. A. Cannizzo, C. J. Milne, C. Consani, W.G.C. Bressler, F. van Mourik, M. Chergui, Light-induced spin crossover in Fe(II)-based complexes: the full photocycle unraveled by ultrafast optical and X-ray spectroscopies. Coord. Chem. Rev. 254, 2677–2686 (2010)

    Google Scholar 

  46. S.E. Canton, X. Zhang, L.M.L. Daku, A.L. Smeigh, J. Zhang, Y. Liu, C.-J. Wallentin, K. Attenkofer, G. Jennings, C.A. Kurtz, D. Gosztola, K. Wärnmark, A. Hauser, V. Sundström, Probing the anisotropic distortion of photoexcited spin crossover complexes with picosecond X-ray absorption spectroscopy. J. Phys. Chem. C 118, 4536–4545 (2014)

    Google Scholar 

  47. G. Capano, T.J. Penfold, N.A. Besley, C.J. Milne, M. Reinhard, H. Rittmann-Frank, P. Glatzel, R. Abela, U. Rothlisberger, M. Chergui, I. Tavernelli, The role of Hartree–Fock exchange in the simulation of X-ray absorption spectra: a study of photoexcited [Fe(2,2-bipyridine)3]2+. Chem. Phys. Lett. 580, 179–184 (2013)

    ADS  Google Scholar 

  48. L. Capes, J.-F. Létard, O. Kahn, Photomagnetic properties in a series of spin crossover compounds [Fe(PM − L)2(NCX)2] (X = S, Se) with substituted 2-pyridylmethylene-4-amino ligands. Chem. Eur. J. 6, 2246–2255 (2000)

    Google Scholar 

  49. M.C. Carey, S.L. Adelman, J.K. McCusker, Insight into the excited state dynamics of Fe(II) polypyridyl complexes from variable-temperature ultrafast spectroscopy. Chem. Sci. 10, 134–144 (2019)

    Google Scholar 

  50. A. Ceulemans, L.G. Vanquickenborne, On the charge-transfer spectra of iron(II)– and ruthenium(II)–tris(2,2-bipyridyl) complexes. J. Am. Chem. Soc. 103, 2238–2241 (1981)

    Google Scholar 

  51. J. Chang, A.J. Fedro, M. van Veenendaal, Ultrafast cascading theory of intersystem crossings in transition-metal complexes. Phys. Rev. B 82, 075124 (2010)

    ADS  Google Scholar 

  52. L.X. Chen, Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 56, 221–254 (2005)

    ADS  Google Scholar 

  53. J. Chen, W.R. Browne, Photochemistry of iron complexes. Coord. Chem. Rev. 374, 15–35 (2018)

    Google Scholar 

  54. L.X. Chen, Z. Wang, J.K. Burdett, P.A. Montano, J.R. Norris, X-ray absorption studies on electronic spin state transitions of Fe(II) complexes in different media. J. Phys. Chem. 99, 7958–7964 (1995)

    Google Scholar 

  55. L.X. Chen, W.J.H. Jäger, G. Jennings, D.J. Gosztola, A. Munkholm, J.P. Hessler, Capturing a photoexcited molecular structure through time-domain X-ray absorption fine structure. Science 292, 262–264 (2001)

    ADS  Google Scholar 

  56. L.X. Chen, G. Jennings, T. Liu, D.J. Gosztola, J.P. Hessler, D.V. Scaltrito, G.J. Meyer, Rapid excited-state structural reorganization captured by pulsed X-rays. J. Am. Chem. Soc. 124, 10861–10867 (2002)

    Google Scholar 

  57. M. Chergui, Empirical rules of molecule photophysics in the light of ultrafast spectroscopy. Pure Appl. Chem. 87, 525–536 (2015)

    Google Scholar 

  58. M. Chergui, Time-resolved X-ray absorption spectroscopies of chemical systems: new perspectives. Struct. Dyn. 3, 031001 (2016)

    Google Scholar 

  59. M. Chergui, E. Collet, Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117, 11025–11065 (2017)

    Google Scholar 

  60. M. Chergui, A.H. Zewail, Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10, 28–43 (2009)

    Google Scholar 

  61. E. Collet, M. Cammarata, Disentangling ultrafast electronic and structural dynamics with X-ray lasers. Chem. Eur. J. 24, 15696–15705 (2018)

    Google Scholar 

  62. E. Collet, P. Guionneau, Structural analysis of spin-crossover materials: from molecules to materials. C. R. Chim. 21, 1133–1151 (2018)

    Google Scholar 

  63. E. Collet, N. Moisan, C. Baldé, R. Bertoni, E. Trzop, C. Laulhé, M. Lorenc, M. Servol, H. Cailleau, A. Tissot, M.-L. Boillot, T. Graber, R. Henning, P. Coppens, M. Buron-Le Cointe, Ultrafast spin-state photoswitching in a crystal and slower consecutive processes investigated by femtosecond optical spectroscopy and picosecond X-ray diffraction. Phys. Chem. Chem. Phys. 14, 6192–6199 (2012)

    Google Scholar 

  64. E. Collet, M. Lorenc, M. Cammarata, L. Guérin, M. Servol, A. Tissot, M.-L. Boillot, H. Cailleau, M. Buron-Le Cointe, 100 picosecond diffraction catches structural transients of laser-pulse triggered switching in a spin-crossover crystal. Chem. Eur. J. 18, 2051–2065 (2012)

    Google Scholar 

  65. R.L. Collins, R. Pettit, W.A. Baker Jr., Mössbauer studies of iron organometallic complexes — III: octahedral complexes. Inorg. Chem. 28, 1001–1010 (1966)

    Google Scholar 

  66. V.L. Colvin, K.L. Cunningham, A.P. Alivisatos, Electric field modulation studies of optical absorption in CdSe nanocrystals: dipolar character of the excited state. J. Chem. Phys. 101, 7122 (1993)

    ADS  Google Scholar 

  67. C. Consani, M. Prémont-Schwarz, A. ElNahhas, C. Bressler, F. van Mourik, A. Cannizzo, M. Chergui, Vibrational coherences and relaxation in the high-spin state of aqueous [FeII(bpy)3]2+. Angew. Chem. Int. Ed. 48, 7184–7187 (2009)

    Google Scholar 

  68. H.R. Crane, D.M. Dennison, Otto Laporte, in Biographical Memoirs of the National Academy of Sciences of the United States of America, vol. 50 (National Academy of Sciences, Washington, DC, 1979), pp. 269–285

    Google Scholar 

  69. C. Creutz, M. Chou, T.L. Netzel, M. Okumura, N. Sutin, Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 102, 1309–1319 (1980)

    Google Scholar 

  70. N.H. Damrauer, G. Cerullo, A. Yeh, T.R. Boussie, C.V. Shank, J.K. McCusker, Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275, 54–57 (1997)

    Google Scholar 

  71. S. Decurtins, F. Felix, J. Ferguson, H.U. Güdel, A. Ludi, The electronic spectrum of \(\mathrm {Fe(bpy)}_3^{2+}\) and \(\mathrm {Os(bpy)}_3^{2+}\). J. Am. Chem. Soc. 102, 4102–4106 (1980)

    Google Scholar 

  72. S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, A. Hauser, Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron(II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984)

    ADS  Google Scholar 

  73. S. Decurtins, P. Gütlich, K.M. Hasselbach, A. Hauser, H. Spiering, Time integral and time differential Mössbauer measurements on [57Co/Mn(bipy)3](PF6)2. Inorg. Chem. 105, 1–4 (1984)

    Google Scholar 

  74. S. Decurtins, P. Gütlich, K.M. Hasselbach, A. Hauser, H. Spiering, Light-induced excited spin state trapping in iron(II) spin-crossover system. Optical spectroscopic and magnetic susceptibility study. Inorg. Chem. 24, 2174–2178 (1985)

    Google Scholar 

  75. C. de Graaf, C. Sousa, Study of the light-induced spin crossover process of the [Fe(2,2-bipyridine)3]2+. Chem. Eur. J. 16, 4550–4556 (2010)

    Google Scholar 

  76. F. de Groot, High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001)

    Google Scholar 

  77. I. Dézsi, B. Molnár, T. Tarnóczi, K. Tompa, On the magnetic behaviour of iron(II)-bis(1,10 phenanthroline)-thiocyanate between − 190 and 30C J. Inorg. Nucl. Chem. 29, 2486–2490 (1967)

    Google Scholar 

  78. S. Dick, Crystal structure of tris(2,2-bipyridine)iron(II) bis(hexafluorophosphate), (C10H8N2)3Fe(PF6)2. Z. Kristallogr. New Cryst. Struct. 213, 356 (1998)

    Google Scholar 

  79. P.A.M. Dirac, The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927)

    MATH  ADS  Google Scholar 

  80. A. Domingo, C. Sousa, C. de Graaf, The effect of thermal motion on the electron localization in metal-to-ligand charge transfer excitations in [FeII(bpy)3]2+” Dalton Trans. 43, 17838–17846 (2014)

    Google Scholar 

  81. E.V. Dose, M.A. Hoselton, N. Sutin, M.F. Tweedle, L.J. Wilson, Dynamics of intersystem crossing processes in solution for six-coordinate d5, d6, and d7 spin-equilibrium metal complexes of iron(III), iron(II), and cobalt(II). J. Am. Chem. Soc. 100, 1141–1147 (1978)

    Google Scholar 

  82. S.B. Erenburg, N.V. Bausk, L.G. Lavrenova, L.N. Mazalov, Thermally and optically induced spin transition effect on the structure of iron(II) polymeric complexes. J. Synchrotron Radiat. 6, 576–578 (1999)

    Google Scholar 

  83. A.H. Ewald, R.L. Martin, I.G. Ross, A.H. White, Anomalous behaviour at the 6A1-2A2 crossover in iron(III) complexes. Proc. R. Soc. Lond. A 280, 235–257 (1964)

    ADS  Google Scholar 

  84. A.H. Ewald, R.L. Martin, E. Sinn, A.H. White, Electronic equilibrium between the 6A1 and 2T2 states in iron(III) dithio chelates. Inorg. Chem. 8, 1837–1846 (1969)

    Google Scholar 

  85. V.M. Farztdinov, A.L. Dobryakov, V.S. Letokhov, Y.E. Lozovik, Y.A. Matveets, S.A. Kovalenko, N.P. Ernsting, Spectral dependence of femtosecond relaxation and coherent phonon excitation in C60 films. Phys. Rev. B 56, 4176 (1997)

    ADS  Google Scholar 

  86. S.M. Fatur, S.G. Shepard, R.F. Higgins, M.P. Shores, N.H. Damrauer, A synthetically tunable system to control MLCT excited-state lifetimes and spin states in iron(II) polypyridines. J. Am. Chem. Soc. 139, 4493–4505 (2017)

    Google Scholar 

  87. F. Felix, J. Ferguson, H.U. Güdel, A. Ludi, Electronic spectra of \(\mathrm {M(bipy)}_3^{2+}\) complex ions (M = Fe, Ru and Os). Chem. Phys. Lett. 62, 153–157 (1979)

    Google Scholar 

  88. G. Félix, M. Mikolasek, H. Peng, W. Nicolazzi, G. Molnár, A.I. Chumakov, L. Salmon, A. Bousseksou, Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering. Phys. Rev. B 91, 024422 (2015)

    ADS  Google Scholar 

  89. J. Ferguson, F. Herren, The electronic structure of the metal-to-ligand charge-transfer states of \(\mathrm {M(bpy)}_3^{2+}\) (M = Fe, Ru, Os). Chem. Phys. Lett. 89, 371–375 (1982)

    Google Scholar 

  90. J. Ferguson, F. Herren, A model for the interpretation of the electronic spectra of the complex ions \(\mathrm {M(bpy)}_3^{2+}\) (M = Fe, Ru, Os) in D3 and C2 Sites. Chem. Phys. 76, 45–59 (1983)

    Google Scholar 

  91. J. Ferguson, F. Herren, G.M. McLaughlin, The circular dichroism of the charge-transfer bands of \(\mathrm {M(bpy)}_3^{2+}\) (M = Fe, Ru, Os). Chem. Phys. Lett. 89, 376–380 (1982)

    Google Scholar 

  92. E. Fermi, J. Orear, A. Rosenfeld, R. Schluter, Nuclear Physics (University of Chicago Press, Chicago, 1950)

    Google Scholar 

  93. R.L. Field, Photoinduced spin crossover in single crystal [FeII(bpy)3](PF6)2, PhD thesis, University of Toronto, 2016

    Google Scholar 

  94. R.L. Field, L. Liu, W. Gawelda, C. Lu, R.J.D. Miller, Spectral signatures of ultrafast spin crossover in single crystal [FeII(bpy)3](PF6)2. Chem. Eur. J. 22, 5118–5122 (2016)

    Google Scholar 

  95. P.E. Figgins, D.H. Busch, Complexes of iron(II), cobalt(II) and nickel(II) with biacetyl-bis-methlimine, 2-pyridinal-methylimine and 2,6-pyridindial-bis-methylimine. J. Am. Chem. Soc. 82, 820–824 (1960)

    Google Scholar 

  96. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications. Special Topics in Inorganic Chemistry (Wiley-VCH, New York, 2000)

    Google Scholar 

  97. G. Fleming, Chemical Applications of Ultrafast Spectroscopy, 1st edn. (Oxford University Press, New York, 1986)

    Google Scholar 

  98. L.A. Fredin, M. Pápai, E. Rozsályi, G. Vankó, K. Wärnmark, V. Sundström, P. Persson, Exceptional excited-state lifetime of an iron(II)–N-heterocyclic carbene complex explained. J. Phys. Chem. Lett. 5, 2066–2071 (2014)

    Google Scholar 

  99. B. Freyer, F. Zamponi, V. Juvé, J. Stingl, M. Woerner, T. Elsaesser, M. Chergui, Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138, 144504 (2013)

    ADS  Google Scholar 

  100. G. Gallé, G. Jonusauskas, M. Tondusson, C. Mauriac, J.F. Létard, E. Freysz, Transient absorption spectroscopy of the [Fe(2 −CH3 −phen)3]2+ complex: study of the high-spin ↔ low-spin relaxation of an isolated iron(II) complex. Chem. Phys. Lett. 556, 82–88 (2013)

    ADS  Google Scholar 

  101. M. Gao, C. Lu, H. Jean-Ruel, L. Liu, A. Marx, K. Onda, S.-Y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R.R. Cooney, G. Moriena, G. Sciaini, R.J.D. Miller, Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013)

    ADS  Google Scholar 

  102. W. Gawelda, C. Bressler, M. Saes, M. Kaiser, A.N. Tarnovsky, D. Grolimund, S.L. Johnson, R. Abela, M. Chergui, Picosecond time-resolved X-ray absorption spectroscopy of solvated organometallic complexes. Phys. Scr. T115, 102–106 (2005)

    Google Scholar 

  103. W. Gawelda, A. Cannizzo, V.-T. Pham, F. van Mourik, C. Bressler, M. Chergui, Ultrafast nonadiabatic dynamics of [FeII(bpy)3]2+ in solution. J. Am. Chem. Soc. 129, 8199–8206 (2007)

    Google Scholar 

  104. W. Gawelda, V.-T. Pham, M. Benfatto, Y. Zaushitsyn, Maik Kaiser, D. Grolimund, S.L. Johnson, R. Abela, A. Hauser, C. Bressler, M. Chergui, Structural determination of a short-lived excited iron(II) complex by picosecond X-ray absorption spectroscopy. Phys. Rev. Lett. 98, 057401 (2007)

    Google Scholar 

  105. W. Gawelda, J. Szlachetko, C.J. Milne, X-ray spectroscopy at free electron lasers. in X-ray Absorption and X-ray Emission Spectroscopy: Theory and Applications, ed. by J.A. van Bokhoven, C. Lamberti, 1st edn. (Wiley, Chichester, 2016), pp. 637–669

    Google Scholar 

  106. P. Glatzel, U. Bergmann, High resolution 1s core hole X-ray absorption in 3d transition metal complexes — electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005)

    Google Scholar 

  107. J.S. Griffith, L.E. Orgel, Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957)

    Google Scholar 

  108. P. Guionneau, Crystallography and spin-crossover: a view of breathing materials. Dalton Trans. 43, 382–393 (2014)

    Google Scholar 

  109. P. Guionneau, J.-F. Létard, D.S. Yufit, D. Chasseau, G. Bravic, A.E. Goeta, J.A.K. Howard, O. Kahn, Structural approach of the features of the spin crossover transition in iron(II) compounds. J. Mater. Chem. 9, 985–994 (1999)

    Google Scholar 

  110. P. Guionneau, S. Lakhloufi, M.-H. Lemée-Cailleau, G. Chastanet, P. Rose, C. Mauriac, J.-F. Létard, Mosaicity and structural fatigability of a gradual spin-crossover single crystal. Polyhedron 542, 52–55 (2012)

    Google Scholar 

  111. P. Gütlich, Fifty years of Mössbauer spectroscopy in solid state research — remarkable achievements, future perspectives. Z. Anorg. Allg. Chem. 638, 15–43 (2012)

    Google Scholar 

  112. P. Gütlich, H.A. Goodwin (eds.), Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol. 233. (Springer, Heidelberg, 2004)

    Google Scholar 

  113. P. Gütlich, H.A. Goodwin (eds.) Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol. 234 (Springer, Heidelberg, 2004)

    Google Scholar 

  114. P. Gütlich, H.A. Goodwin (eds.) Spin Crossover in Transition Metal Compounds III. Topics in Current Chemistry, vol. 235. (Springer, Heidelberg, 2004)

    Google Scholar 

  115. P. Gütlich, H. Köppen, R. Link, H.G. Steinhäuser, Interpretation of high spin \(\rightleftharpoons \) low spin transition in iron(II) complexes. I. A phenomenological thermodynamics model. J. Chem. Phys. 70, 3977–2160 (1979)

    Google Scholar 

  116. M.A. Halcrow, The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 26, 3523–3576 (2007)

    Google Scholar 

  117. K. Haldrup, G. Vankó, W. Gawelda, A. Galler, G. Doumy, A.M. March, E.P. Kanter, A. Bordage, A.O. Dohn, T.B. van Driel, K.S. Kjær, H.T. Lemke, S.E. Canton, J. Uhlig, V. Sundström, L. Young, S.H. Southworth, M.M. Nielsen, C. Bressler, Guest–host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: solvation dynamics and photoinduced spin transition in aqueous \(\mathrm {Fe(bipy)}_3^{2+}\). J. Phys. Chem. A 116, 9878–9887 (2012)

    Google Scholar 

  118. K. Haldrup, W. Gawelda, R. Abela, R. Alonso-Mori, U. Bergmann, A. Bordage, M. Cammarata, S.E. Canton, A.O. Dohn, T.B. van Driel, D.M. Fritz, A. Galler, P. Glatzel, T. Harlang, K.S. Kjær, H.T. Lemke, K.B. Møller, Z. Németh, M. Pápai, N. Sas, J. Uhlig, D. Zhu, G. Vankó, V. Sundström, M.M. Nielsen, C. Bressler, Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120, 1158–1168 (2016)

    Google Scholar 

  119. C. Hannay, M.-J. Hubin-Franskin, F. Grandjean, V. Briois, J.-P. Itié, A. Polian, S. Trofimenko, G.J. Long, X-ray absorption spectroscopic study of the temperature and pressure dependence of the electronic spin states in several iron(II) and cobalt(II) tris(pyrazolyl)borate complexes. Inorg. Chem. 36, 5580–5588 (1997)

    Google Scholar 

  120. M. Harb, W. Peng, G. Sciaini, C.T. Hebeisen, R. Ernstorfer, M.A. Eriksson, M.G. Lagally, S. Kruglik, R.J.D. Miller, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si. Phys. Rev. B 79, 094301 (2009)

    ADS  Google Scholar 

  121. D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Oxford University Press, New York, 1978)

    Google Scholar 

  122. C.S. Hastings, Josiah Willard Gibbs, in Biographical Memoirs of the National Academy of Sciences of the United States of America, vol. 6 (National Academy of Sciences, Washington, DC, 1909), pp. 373–393

    Google Scholar 

  123. A. Hauser, Reversibility of light-induced excited spin state trapping in the Fe(ptz)6(BF4)2 and the Zn1−xFex(ptz)6(BF4)2 spin-crossover systems. Chem. Phys. Lett. 124, 543–548 (1986)

    ADS  Google Scholar 

  124. A. Hauser, Intersystem crossing in the [FeII(ptz)6](BF4)2 spin crossover system (ptz = 1-propyltetrazole). J. Chem. Phys. 94, 2741–2748 (1991)

    ADS  Google Scholar 

  125. A. Hauser, Intersystem crossing in Fe(II) coordination compounds. Coord. Chem. Rev. 111, 275–290 (1991)

    Google Scholar 

  126. A. Hauser, C. Reber, Spectroscopy and chemical bonding in transition metal complexes, in 50 Years of Structure and Bonding — The Anniversary Volume, vol. 172, ed. by D. Michael, P. Mingos (Springer, Cham, 2017), pp. 291–312

    Google Scholar 

  127. A. Hauser, P. Gütlich, H. Spiering, High-spin → low-spin relaxation kinetics and cooperative effects in the Fe(ptz)6(BF4)2 and Zn1−xFex(ptz)6(BF4)2 (ptz = 1-Propyltetrazole) spin-crossover systems. Inorg. Chem. 25, 4245–4248 (1986)

    Google Scholar 

  128. A. Hauser, N. Amstutz, S. Delayhaye, A. Sadki, S. Schenker, R. Sieber, M. Zerara, Chemical pressure. Chimia 56, 685–689 (2002)

    Google Scholar 

  129. A. Hauser, N. Amstutz, S. Delayhaye, A. Sadki, S. Schenker, R. Sieber, M. Zerara, Fine tuning the electronic properties of [M(bpy)3]2+ complexes by chemical pressure (M = Fe2+, Ru2+, Co 2+, bpy = 2,2’-Bipyridine). in Optical Spectra and Chemical Bonding in Inorganic Compounds, ed. by D.M.P. Mingos, T. Schönherr. Structure and Bonding, vol. 106 (Springer, Berlin, 2004), pp. 81–96

    Google Scholar 

  130. A. Hauser, C. Enachescu, M.L.A. Vargas, N. Amstutz, Low-temperature lifetimes of metastable high-spin states in spin-crossover and in low-spin iron(II) compounds: the rule and exceptions to the rule. Coord. Chem. Rev. 250, 1642–1652 (2006)

    Google Scholar 

  131. S. Hayami, R. Kawajiri, G. Juhász, T. Kawahara, K. Hashiguchi, O. Sato, K. Inoue, Y. Maeda, Study of intermolecular interaction for the spin-crossover iron(II) compounds. Bull. Chem. Soc. Jpn. 76, 1207–1213 (2003)

    Google Scholar 

  132. B.L. Henke, E.M. Gullikson, J.C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993)

    ADS  Google Scholar 

  133. E.M. Hernández, C.M. Quintero, O. Kraieva, C. Thibault, C. Bergaud, L. Salmon, G. Molnár, A. Bousseksou, AFM imaging of molecular spin-state changes through quantitative thermomechanical measurements. Adv. Mater. 26, 2889–2893 (2014)

    Google Scholar 

  134. A. Hoefer, Vibrational Spectroscopy on Thermally and Optically Switchable Spin Crossover Compounds. PhD thesis, Universität Hamburg, 2000

    Google Scholar 

  135. K. Hong, H. Cho, R.W. Schoenlein, T.K. Kim, N. Huse, Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy. Acc. Chem. Res. 48, 2957–2966 (2015)

    Google Scholar 

  136. K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. Lond. A 204, 406–423 (1950)

    MATH  ADS  Google Scholar 

  137. F. Hund, Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. JZ. Physik 33, 345 (1925)

    MATH  ADS  Google Scholar 

  138. N. Huse, T.K. Kim, L. Jamula, J.K. McCusker, F.M.F. de Groot, R.W. Schoenlein, Photo-induced spin-state conversion in solvated transition metal complexes probed via time-resolved soft X-ray spectroscopy. J. Am. Chem. Soc. 132, 6809–6816 (2010)

    Google Scholar 

  139. N. Huse, H. Cho, K. Hong, L. Jamula, F.M.F. de Groot, T.K. Kim, J.K. McCusker, R.W. Schoenlein, Femtosecond soft X-ray spectoscopy of solvated transition-metal complexes: deciphering the interplay of electronic and structural dynamics. J. Phys. Chem. Lett. 2, 880–884 (2011)

    Google Scholar 

  140. H. Irving, R.J.P. Williams, The stability of transition-metal complexes. J. Chem. Soc. 1953, 3192–3210 (1953)

    Google Scholar 

  141. S. Iuchi, N. Koga, An improved model electronic Hamiltonian for potential energy surfaces and spin–orbit couplings of low-lying d–d states of [FeII(bpy)3]2+. J. Chem. Phys. 140, 024309 (2014)

    ADS  Google Scholar 

  142. S. Iuchi, N. Koga, Insight into the light-induced spin crossover of [FeII(bpy)3]2+ in aqueous solution from molecular dynamics simulation of d–d excited states. Phys. Chem. Chem. Phys. 18, 4789 (2016)

    Google Scholar 

  143. R. Jenkins, R. Manne, R. Robin, C. Senemaud, IUPAC — nomenclature system for X-ray spectroscopy. X-ray Spectrom. 20, 149–155 (1955)

    ADS  Google Scholar 

  144. Y. Jiang, L. Liu, H.M. Müller-Werkmeister, C. Lu, D. Zhang, R.L. Field, A. Sarracini, G. Moriena, E. Collet, R.J.D. Miller, Structural dynamics upon photoexcitation in a spin crossover crystal probed with femtosecond electron diffraction. Angew. Chem. Int. Ed. 56, 7130–7134 (2017)

    Google Scholar 

  145. G.F. Joyce, Leslie Orgel (1927–2007). Nature 450, 627 (2007)

    ADS  Google Scholar 

  146. E.A. Juban, J.K. McCusker, Ultrafast dynamics of 2E state formation in Cr(acac)3. J. Am. Chem. Soc. 127, 6857–6865 (2005)

    Google Scholar 

  147. E.A. Juban, A.L. Smeigh, J.E. Monat, J.K. McCusker, Ultrafast dynamics of ligand-field excited states. Coord. Chem. Rev. 250, 1783–1791 (2006)

    Google Scholar 

  148. O. Kahn, J. Kröber, C. Jay, Spin transition molecular materials for displays and data recording. Adv. Mater. 4, 718–728 (1992)

    Google Scholar 

  149. Z. Kajcsos, M. Alflen, H. Spiering, P. Gütlich, R. Albrecht, R. Schulze, R. Kurz, A time-differential Mössbauer emission spectrometer with high efficiency and high time resolution. Hyperfine Interact. 29, 1551–1554 (1986)

    ADS  Google Scholar 

  150. W. Kaszub, M. Buron-Le Cointe, M. Lorenc, M. Boillot, M. Servol, A. Tissot, L. Guérin, H. Cailleau, E. Collet, Spin-state photoswitching dynamics of the [(TPA)Fe(TCC)]SbF6 complex. Eur. J. Inorg. Chem. 2013, 992–1000 (2013)

    Google Scholar 

  151. M. Kepenekian, B. Le Guennic, V. Robert, Primary role of the electrostatic contributions in a rational growth of hysteresis loop in spin-crossover Fe(II) complexes. J. Am. Chem. Soc. 131, 11498–11502 (2009)

    Google Scholar 

  152. M. Khalil, M.A. Marcus, A.L. Smeigh, J.K. McCusker, H.H.W. Chong, R.W. Schoenlein, Picosecond X-ray absorption spectroscopy of a photoinduced iron(II) spin crossover reaction in solution. J. Phys. Chem. A 110, 38–44 (2006)

    Google Scholar 

  153. A.D. Kirk, P.E. Hoggard, G.B. Porter, M.G. Rockley, M.W. Windsor, Picosecond flash photolysis and spectroscopy: transition metal coordination compounds. Chem. Phys. Lett., 37, 199–203 (1976)

    ADS  Google Scholar 

  154. K.S. Kjær, W. Zhang, R. Alonso-Mori, U. Bergmann, M. Chollet, R.G. Hadt, R.W. Hartsock, T. Harlang, T. Kroll, K. Kubiček, H.T. Lemke, H.W. Liang, Y. Liu, M.M. Nielsen, J.S. Robinson, E.I. Solomon, D. Sokaras, T.B. van Driel, T.-C. Weng, D. Zhu, P. Persson, K. Wärnmark, V. Sundström, K.J. Gaffney, Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2, 2−bipyridine)2(CN)2]. Struct. Dyn. 4, 044030 (2017)

    Google Scholar 

  155. E.M. Kober, T.J. Meyer, Concerning the absorption spectra of the ions \(\mathrm {M(bpy)}_3^{2+}\) (M = Fe, Ru, Os; bpy = 2,2-bipyridine). Inorg. Chem. 21, 3967–3977 (1982)

    Google Scholar 

  156. Q.Y. Kong, M.G. Laursen, K. Haldrup, K.S. Kjaer, D. Khakhulin, E. Biasin, T.B. van Driel, M. Wulff, V. Kabanova, R. Vuilleumier, S. Bratos, M.M. Nielsen, K.J. Gaffney, T.C. Weng, M.H.J. Koch, Initial metal–metal bond breakage detected by fs X-ray scattering in the photolysis of Ru3(CO)12 in cyclohexane at 400 nm. Photochem. Photobiol. Sci. 18, 319–327 (2019)

    Google Scholar 

  157. E. König, K. Madeja, Unusual magnetic behaviour of some iron(II)-bis-(1,10-phenanthroline) complexes. Chem. Commun. 1966, 61–62 (1966)

    Google Scholar 

  158. E. König, G. Ritter, R. Schnakig, Thermally induced incomplete high-spin (5T2) \(\rightleftharpoons \) low-spin (1A1) transition in dithiocyanotobis(N-phenyl-2-pyridinal phenylimine) iron(II). Chem. Phys. Lett. 27, 23–26 (1974)

    Google Scholar 

  159. K. Koshino, T. Ogawa, Role of long-range interaction in photoinduced spin-state transitions in spin-crossover complexes. J. Phys. Soc. Jpn. 68, 2164–2167 (1999)

    ADS  Google Scholar 

  160. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J.-F. Létard, Y. Bouhedja, O. Kahn, Spin crossover behavior under pressure of Fe(PM-L)2(NCS)2 compounds with substituted 2-pyridylmethylene 4-anilino ligands. Chem. Phys. Lett. 294, 545–553 (1998)

    ADS  Google Scholar 

  161. P. Kukura, D.W. McCamant, R.A. Mathies, Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007)

    ADS  Google Scholar 

  162. K.S. Kumara, M. Ruben, Emerging trends in spin crosssover (SCO) based functional materials and devices. Coor. Chem. Rev. 346, 176–205 (2017)

    Google Scholar 

  163. S. Lakhloufi, M.H. Lemeé-Cailleau, G. Chastanet, P. Rosa, N. Daroa, P. Guionneau, Structural movies of the gradual spin-crossover in a molecular complex at various physical scales. Phys. Chem. Chem. Phys. 18, 28307 (2016)

    Google Scholar 

  164. S. Lakhloufi, E. Tailleur, W. Guo, F. Le Gac, M. Marchivie, M.-H. Lemée-Cailleau, G. Chastanet, P. Guionneau, Mosaicity of spin-crossover crystals. Crystals 8, 363 (2018)

    Google Scholar 

  165. O. Laporte, W.F. Meggers, Some rules of spectral structure. J. Opt. Soc. Am. 11, 459–463 (1925)

    ADS  Google Scholar 

  166. J.-J. Lee, H.-S. Sheu, C.-R. Lee, J.-M. Chen, J.-F. Lee, C.-C. Wang, C.-H. Huang, Y. Wang, X-ray absorption spectroscopic studies on light-induced excited spin state trapping of an Fe(II) complex. J. Am. Chem. Soc. 122, 5742–5747 (2000)

    Google Scholar 

  167. V. Legrand, F. Le Gac, P. Guionneau, J.-F. Létard, Neutron powder diffraction studies of two spin transition FeII complexes under pressure. J. Appl. Crystallogr. 41, 3523–3576 (2008)

    Google Scholar 

  168. H.T. Lemke, C. Bressler, L.X. Chen, D.M. Fritz, K.J. Gaffney, A. Galler, W. Gawelda, K. Haldrup, R.W. Hartsock, H.I.J. Kim, K.H. Kim, J.H. Lee, M.M. Nielsen, A.B. Stickrath, W. Zhang, D. Zhu, M. Cammarata, Femtosecond X-ray absorption spectroscopy at a hard X-ray free electron laser: applications to spin crossover dynamics. J. Phys. Chem. A 117, 735–740 (2013)

    Google Scholar 

  169. H.T. Lemke, K.S. Kjær, R. Hartsock, T.B. van Driel, M. Chollet, J.M. Glownia, S. Song, D. Zhu, E. Pace, S.F. Matar, M.M. Nielsen, M. Benfatto, K.J. Gaffney, E. Collet, M. Cammarata, Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Commun. 8, 15342 (2017)

    ADS  Google Scholar 

  170. J.-F. Létard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn, Wide Thermal Hysteresis for the Mononuclear Spin-Crossover Compound cis-Bis(thiocyanato)bis[N-(2-pyridylmethylene)- 4-(phenylethynyl)anilino]iron(II). J. Am. Chem. Soc. 119, 10861–10862 (1997)

    Google Scholar 

  171. J.-F. Létard, P. Guionneau, L. Rabardel, J.A.K. Howard, A.E. Goeta, D. Chasseau, O. Kahn, Structural, magnetic, and photomagnetic studies of a mononuclear iron(II) derivative exhibiting an exceptionally abrupt spin transition. Light-induced thermal hysteresis phenomenon. J. Am. Chem. Soc. 37, 4432–4441 (1998)

    Google Scholar 

  172. J.-F. Létard, L. Capes, G. Chastanet, N. Moliner, S. Létard, J.-A. Real, O. Kahn, Critical temperature of the LIESST effect in iron(II) spin crossover compounds. Chem. Phys. Lett. 313, 115–120 (1999)

    ADS  Google Scholar 

  173. M. Lorenc, N. Moisan, M. Servol, H. Cailleau, S.-Y. Koshihara, M. Maesato, X. Shao, Y. Nakano, H. Yamochi, G. Saito, E. Collet, Multi-phonon dynamics of the ultrafast photoinduced transition of (EDO-TTF)2SbF6. J. Phys. Conf. Ser. 148, 012001 (2009)

    Google Scholar 

  174. M. Lorenc, J. Hébert, N. Moisan, E. Trzop, M. Servol, M. Buron-Le Cointe, H. Cailleau, M.-L. Boillot, E. Pointecorvo M. Wulff, S.-Y. Koshihara, E. Collet, Successive dynamical steps of photoinduced switching of a molecular Fe(III) spin-crossover material by time-resolved X-ray diffraction. Phys. Rev. Lett. 103, 028301 (2009)

    ADS  Google Scholar 

  175. M. Lorenc, C. Balde, W. Kaszub, A. Tissot, N. Moisan, M. Servol, M. Buron-Le Cointe, H. Cailleau, P. Chasle, P. Czarnecki, M.-L. Boillot, E. Collet, Cascading photoinduced, elastic, and thermal switching of spin states triggered by a femtosecond laser pulse in an Fe(III) molecular crystal. Phys. Rev. B 85, 054302 (2012)

    ADS  Google Scholar 

  176. S. Lundqvist (ed.), Nobel Lectures: Physics 1971–1980 (World Scientific, Singapore, 1992)

    Google Scholar 

  177. F.W. Lytle, The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure. J. Synchrotron Radiat. 6, 123–134 (1999)

    Google Scholar 

  178. K. Madeja, E. König, Zur Frage der Bindungsverhältnisse in Komplexverbindungen des Eisen(II) mit 1,10-Phenanthrolin. J. Inorg. Nucl. Chem. 83, 3732–3734 (1961)

    Google Scholar 

  179. Y. Maeda, Y. Takashima, Y. Nishida, Studies of iron(II) complexes with several schiff bases: new examples of 5T21A1 equilibrium. Bull. Chem. Soc. Jpn. 49, 2427–2432 (1976)

    Google Scholar 

  180. B.G. Malmström (ed.) Nobel Lectures: Chemistry 1991–1995 (World Scientific Publishing, Singapore, 1997)

    Google Scholar 

  181. A.M. March, T.A. Assefa, C. Boemer, C. Bressler, A. Britz, M. Diez, G. Doumy, A. Galler, M. Harder, D. Khakhulin, Z. Németh, M. Pápai, S. Schulz, S.H. Southworth, H. Yava, L. Young, W. Gawelda, G. Vankó, Probing transient valence orbital changes with picosecond valence-to-core X-ray emission spectroscopy. J. Phys. Chem. C 121, 2620–2626 (2017)

    Google Scholar 

  182. M. Marchivie, P. Guionneau, J.-F. Létard, D. Chasseau, Towards direct correlations between spin-crossover and structure features in iron(II) complexes. Acta Crystallogr. B 59, 479–486 (2003)

    Google Scholar 

  183. M. Marchivie, P. Guionneau, J.-F. Létard, D. Chasseau, Photo-induced spin-transition: the role of the iron(II) environment distortion. Acta Crystallogr. B 61, 25–28 (2005)

    Google Scholar 

  184. R.A. Marcus, Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993)

    Google Scholar 

  185. A. Marino, Ultrafast Investigation of Electronic and Structural Dynamics in Photomagnetic Molecular Solids. PhD thesis, Université de Rennes 1, 2015

    Google Scholar 

  186. A. Marino, M. Servol, R. Bertoni, M. Lorenc, C. Mauriac, J.-F. Létard, E. Collet, Femtosecond optical pump–probe reflectivity studies of spin-state photo-switching in the spin-crossover molecular crystals [Fe(PM − AzA)2(NCS)2]. Polyhedron 66, 123–128 (2013)

    Google Scholar 

  187. A. Marino, P. Chakraborty, M. Servol, M. Lorenc, E. Collet, A. Hauser, The role of ligand-field states in the ultrafast photophysical of the prototypical iron(II) spin-crossover compound [Fe(ptz)6](BF4)2. Angew. Chem. Int. Ed. 53, 3863–3867 (2014)

    Google Scholar 

  188. A. Marino, M. Buron-Le Cointe, M. Lorenc, L. Toupet, R. Henning, A.D. DiChiara, K. Moffat, N. Bréfuel, E. Collet, Out-of-equilibrium dynamics of photoexcited spin-state concentration waves. Faraday Discuss. 117, 363–379 (2015)

    ADS  Google Scholar 

  189. A. Marino, M. Cammarata, S.F. Matar, J.-F. Létard, G. Chastanet, M. Chollet, J.M. Glownia, H.T. Lemke, E. Collet, Activation of coherent lattice phonons following ultrafast molecular spin-state photo-switching: a molecular-to-lattice energy transfer. Struct. Dyn. 3, 023605 (2016)

    Google Scholar 

  190. J.K. McCusker, Femtosecond absorption spectoscopy of transition metal charge-transfer complexes. Acc. Chem. Res. 36, 876–887 (2003)

    Google Scholar 

  191. J.K. McCusker, Enlightened state. Nat. Phys. 10, 476–477 (2014)

    Google Scholar 

  192. J.K. McCusker, Electronic structure in the transition metal block and its implications for light harvesting. Science 363, 484–488 (2019)

    ADS  Google Scholar 

  193. J.K. McCusker, K.N. Walda, R.C. Dunn, J.D. Simon, D. Magde, D.N. Hendrickson, Sub-picosecond ΔS = 2 intersystem crossing in low-spin ferrous complexes. J. Am. Chem. Soc. 87, 6919–6920 (1992)

    Google Scholar 

  194. J.K. McCusker, K.N. Walda, R.C. Dunn, J.D. Simon, D. Magde, D.N. Hendrickson, Subpicosecond 1MLCT →5T2g intersystem crossing in low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1992)

    Google Scholar 

  195. J.J. McGarvey, I. Lawthers, Photochemically-induced perturbation of the \({ }_{1}\mathrm {A}\rightleftharpoons { }_{5}\mathrm {T}\) equilibrium FeII complexes by pulsed laser irradiation in the metal-to-ligand charge-transfer absorption band. J. Chem. Soc. Chem. Commun. 906–907 (1982)

    Google Scholar 

  196. S. Mebs, B. Braun, R. Kositzki, C. Limberg, M. Haumann, Abrupt versus gradual spin-crossover in FeII(phen)2(NCS)2 and FeIII(dedtc)3 compared by X-ray absorption and emission spectroscopy and quantum-chemical calculations. Inorg. Chem. 54, 11606–11624 (2015)

    Google Scholar 

  197. L. Miaja-Avila, G.C. O’Neil, Y.I. Joe, B.K. Alpert, N.H. Damrauer, W.B. Doriese, S.M. Fatur, J.W. Fowler, G.C. Hilton, R. Jimenez, C.D. Reintsema, D.R. Schmidt, K.L. Silverman, D.S. Swetz, H. Tatsuno, J.N. Ullom, Ultrafast time-resolved hard X-ray emission spectroscopy on a tabletop. Phys. Rev. X 6, 031047 (2016)

    Google Scholar 

  198. R.J.D. Miller, M. Pierre, T.S. Rose, M.D. Fayer, A coherent photoacoustic approach to excited-state–excited-state absorption spectroscopy: application to the investigation of a near-resonant contribution to ultrasonic diffraction. J. Phys. Chem. 88, 3021–3025 (1984)

    Google Scholar 

  199. D.M. Mills, A. Lewis, A. Harootunian, J. Huang, B. Smith, Time-resolved X-ray absorption spectroscopy of carbon monoxide–myoglobin recombination after laser photolysis. Science 223, 811–813 (1984)

    ADS  Google Scholar 

  200. C.J. Milne, T.J. Penfold, M. Chergui, Recent experimental and theoretical developments in time-resolved X-ray spectroscopies. Coord. Chem. Rev. 277, 44–68 (2014)

    Google Scholar 

  201. A. Moguilevski, M. Wilke, G. Grell, S.I. Bokarev, S.G. Aziz, N. Engel, A.A. Raheem, O. Kühn, I.Yu. Kiyan, E.F. Aziz, Ultrafast spin crossover in [FeII(bpy)3]2+: competing mechanisms by extreme ultraviolet photoemission spectroscopy. Chem. Phys. Chem. 18, 465–469 (2016)

    Google Scholar 

  202. J.E. Monat, J.K. McCusker, Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000)

    Google Scholar 

  203. R.L. Mössbauer, Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z. Physik 151, 124–143 (1958)

    ADS  Google Scholar 

  204. H.M. Müller-Werkmeister, Y.-L. Li, E.-B. W. Lerch, D. Bigourd, J. Bredenbeck, Ultrafast hopping from band to band: assigning infrared spectra based on vibrational energy transfer. Angew. Chem. Int. Ed. 52, 6214–6217 (2013)

    Google Scholar 

  205. J. Nance, D.N. Bowman, S. Mukherjee, C.T. Kelley, E. Jakubikova, Insights into the spin-state transitions in [Fe(tpy)2]2+: importance of the terpyridine rocking motion. Inorg. Chem. 54, 11259–11268 (2015)

    Google Scholar 

  206. K.A. Nelson, R. Casalegno, R.J.D. Miller, M.D. Fayer, Laser-induced excited state and ultrasonic wave gratings: amplitude and phase grating contributions to diffraction. J. Chem. Phys. 77, 1144–1152 (1982)

    ADS  Google Scholar 

  207. Nobel Lectures: Chemistry 1901–1921 (Elsevier, Amsterdam, 1966)

    Google Scholar 

  208. Nobel Lectures: Physics 1942–1962 (Elsevier, Amsterdam, 1964)

    Google Scholar 

  209. G. Natta, Nobel Lectures: Chemistry 1963–1970 (Elsevier, Amsterdam, 1972)

    Google Scholar 

  210. S. Nozawa, T. Sato, M. Chollet, K. Ichiyanagi, A. Tomita, H. Fujii, S.-I. Adachi, S.-Y. Koshihara, Direct probing of spin state dynamics coupled with electronic and structural modifications by picosecond time-resolved XAFS. J. Am. Chem. Soc. 132, 61–63 (2010)

    Google Scholar 

  211. B. Ordejón, C. de Graaf, C. Sousa, Light-induced excited-state spin trapping in tetrazole-based spin crossover systems. J. Am. Chem. Soc. 130, 13961–13968 (2008)

    Google Scholar 

  212. L.E. Orgel, Some applications of crystal-field theory to problems in transition-metal chemistry, in Quelques Problèmes de Chimie Minérale: Rapports et Discussions, ed. by R. Stoops (Institut International de Chimie Solvay, Brussels, 1956), pp. 289–338

    Google Scholar 

  213. L.E. Orgel, The origin of life on earth. Sci. Am. 271, 76–83 (1994)

    Google Scholar 

  214. A.G. Orpen, L. Brammer, F.H. Allen, O. kennard, D.G. Watson, R. Taylor, Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and coordination complexes of the d- and f-block metals. J. Chem. Soc. Dalton Trans. 12, S1–S83 (1989)

    Google Scholar 

  215. A. Ould-Hamouda, B. Viquerat, J. Degert, S.F. Matar, J.-F. Létard, F. Guillaume, E. Freysz, Impact of spin state transition on vibrations of [Fe − (PM − BiA)2(NCS)2] and [Fe − (PM − PEA)2(NCS)2] spin crossover compounds: experimental and theoretical far IR and Raman study. Eur. J. Inorg. Chem. 385–393 (2018). https://doi.org/10.1002/ejic.201700979

  216. R.A. Palmer, T.S. Piper, 2,2-Bipyridine Complexes. I. Polarized Crystal Spectra of Tris(2,2-bipyridine)copper(II), -nickel(II), -cobalt(II), -iron(II), and -ruthenium(II) Transition Metal Compounds. Inorg. Chem. 5, 864–878 (1966)

    Google Scholar 

  217. M. Pápai, G. Vankó, C. de Graaf, T. Rozgonyi, Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions. J. Chem. Theory Comput. 9, 509–519 (2013)

    Google Scholar 

  218. T. Parpiiev, Ultrafast Magneto-Acoustics in Magnetostrictive Materials. PhD thesis, Le Mans Université, 2017

    Google Scholar 

  219. T. Parpiiev, M. Servol, M. Lorenc, I. Chaban, R. Lefort, E. Collet, H. Cailleau, P. Ruello, N. Daro, G. Chastanet, T. Pezeril, Ultrafast non-thermal laser excitation of gigahertz longitudinal and shear acoustic waves in spin-crossover molecular crystals [Fe(PM − AzA)2(NCS)2]. Appl. Phys. Lett. 111, 151901 (2017)

    ADS  Google Scholar 

  220. L. Pauling, The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931)

    MATH  Google Scholar 

  221. L. Pauling, The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc. 53, 1367–1400 (1931)

    MATH  Google Scholar 

  222. L. Pauling, The nature of the chemical bond. III. The transition from one extreme bond type to another. J. Am. Chem. Soc. 54, 988–1003 (1932)

    MATH  Google Scholar 

  223. L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 988–1003 (1932)

    MATH  Google Scholar 

  224. T.J. Penfold, E. Gindensperger, C. Daniel, C.M. Marian, Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018)

    Google Scholar 

  225. C.S. Ponseca Jr., P. Chábera, J. Uhlig, P. Persson, V. Sundtröm, Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940–11024 (2017)

    Google Scholar 

  226. K.A. Reeder, E.V. Dose, L.J. Wilson, Solution-state spin-equilibrium properties of the tris[2-(2-pyridyl)imidazole]iron(II) and tris[2-(2-pyridyl)benzimidazole] iron(II) cations. Inorg. Chem. 17, 1071–1075 (1978)

    Google Scholar 

  227. J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000)

    ADS  Google Scholar 

  228. J.J. Rehr, J.J. Kas, F.D. Vila, M.P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5510–5513 (2010)

    Google Scholar 

  229. K.L. Ronayne, H. Paulsen, A. Höfer, A.C. Dennis, J.A. Wolny, A.I. Chumakov, V. Schünemann, H. Winkler, H. Spiering, A. Bousseksou, P. Gütlich, A.X. Trautwein, J.J. McGarvey, Vibrational spectrum of the spin crossover complex [Fe(phen)2(NCS)2] studied by IR and R. Spectroscopy, nuclear inelastic scattering and DFT calculations. Phys. Chem. Chem. Phys. 8, 4685–4693 (2006)

    Google Scholar 

  230. T. Ryutaro, Absorption spectra of co-ordination compounds. I. Bull. Chem. Soc. Jpn. 13, 388–400 (1938)

    Google Scholar 

  231. T. Ryutaro, Absorption spectra of co-ordination compounds. II. Bull. Chem. Soc. Jpn. 13, 436–450 (1938)

    Google Scholar 

  232. M. Saes, C. Bressler, R. Abela, D. Grolimund, S.L. Johnson, P.A. Heimann, M. Chergui, Observing photochemical transients by ultrafast X-ray absorption spectroscopy. Phys. Rev. Lett. 90, 047403 (2003)

    ADS  Google Scholar 

  233. T. Sato, S. Nozawa, K. Ichiyanagi, A. Tomita, M. Chollet, H. Ichikawa, H. Fujii, S.-I. Adachi, S.-Y. Koshihara, Capturing molecular structural dynamics by 100 ps time-resolved X-ray absorption spectroscopy. J. Synchrotron Radiat. 16, 110–115 (2009)

    Google Scholar 

  234. D.E. Sayers, E.A. Stern, F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray–absorption fine structure. Phys. Rev. Lett. 27, 1204–1207 (1971)

    ADS  Google Scholar 

  235. S. Schenker, A. Hauser, W. Wang, I.Y. Chan, Matrix effects on the high-spin → low-spin relaxation in [M1−xFex(bpy)3](PF6)2 (M = Cd, Mn and Zn, bpy = 2,  2−bipyridine). Chem. Phys. Lett. 297, 281–286 (1998)

    ADS  Google Scholar 

  236. H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Liebigs Ann. 131, 118–119 (1864)

    Google Scholar 

  237. H.L. Schläfer, E. König, Über die UV-Absorptionsspecktren von Komplexionen mit π-Elektronensystemen als Liganden. I. Komplexe mit α, α′-Dipyridyl und o-Phenanthrolin. Z. Phys. Chem. 5, 373–386 (1956)

    Google Scholar 

  238. R. Schlapp, W.G. Penney, Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666 (1932)

    Google Scholar 

  239. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946 (1969)

    Google Scholar 

  240. H.J. Shepherd, P. Rosa, L. Vendier, N. Casati, J.-F. Létard, A. Bousseksou, P. Guionneau, G. Molnár, High-pressure spin-crossover in a dinuclear Fe(II) complex. Phys. Chem. Chem. Phys. 14, 5265–5271 (2012)

    Google Scholar 

  241. C.P. Slichter, H.G. Drickamer, Pressure-induced electronic changes in compounds of iron. J. Chem. Phys. 56, 2142–2160 (1972)

    ADS  Google Scholar 

  242. A.L. Smeigh, M. Creelman, R.A. Mathies, J.K. McCusker, Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J. Am. Chem. Soc. 130, 14105–14107 (2008)

    Google Scholar 

  243. M. Sorai, S. Seki, Magnetic heat capacity due to cooperative low-spin \({ }^{1}\mathrm {A}_{1} \rightleftharpoons \) high-spin 5A2 transition in [Fe(phen)2(NCS)2] crystal. J. Phys. Soc. Jpn. 33, 575 (1972)

    Google Scholar 

  244. M. Sorai, S. Seki, Phonon coupled cooperative low-spin \({ }^{1}\mathrm {A}_{1} \rightleftharpoons \) high-spin 5A2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals. J. Phys. Chem. Solids 35, 555–570 (1974)

    Google Scholar 

  245. C. Sousa, C. de Graaf, A. Rudavskyi, R. Broer, J. Tatchen, M. Etinski, C.M. Marian, Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [FeII(bpy)3]2+ complex. Chem. Eur. J. 19, 17541–17551 (2013)

    Google Scholar 

  246. C. Sousa, C. de Graaf, A. Rudavskyi, R. Broer, Theoretical study of the light-induced spin crossover mechanism in [Fe(mtz)6]2+ and [Fe(phen)3]2+. J. Phys. Chem. A 121, 9720–9727 (2017)

    Google Scholar 

  247. C. Sousa, A. Domingo, C. de Graaf, Effect of second-order spin–orbit coupling on the interaction between spin states in spin-crossover systems. Chem. Eur. J. 24, 5146–5152 (2018)

    Google Scholar 

  248. C. Sousa, M. Llunell, A. Domingo, C. de Graaf, Theoretical evidence for the direct 3MLCT-HS deactivation in the light-induced spin crossover of Fe(II)–polypyridyl complexes. Phys. Chem. Chem. Phys. 20, 2351 (2018)

    Google Scholar 

  249. R.C. Stoufer, D.H. Busch, W.B. Hadley, Unusual magnetic properties of some six-coordinate cobalt(II) complexes—electronic isomers. J. Am. Chem. Soc. 83, 3732–3734 (1961)

    Google Scholar 

  250. N. Suaud, M.-L. Bonnet, C. Boilleau, P. Labèguerie, N. Guihéry, Light-induced excited spin state trapping: Ab initio study of the physics at the molecular level. J. Am. Chem. Soc. 131, 715–722 (2009)

    Google Scholar 

  251. Y. Tanabe, S. Sugano, On the absorption spectra of complex ions. I. J. Phys. Soc. Jpn. 9, 753–766 (1954)

    ADS  Google Scholar 

  252. Y. Tanabe, S. Sugano, On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 9, 766–779 (1954)

    ADS  Google Scholar 

  253. Y. Tanabe, S. Sugano, On the absorption spectra of complex ions, III. The calculation of the crystalline field strength. J. Phys. Soc. Jpn. 11, 864–877 (1956)

    Google Scholar 

  254. A.N. Tarnovsky, W. Gawelda, M. Johnson, C. Bressler, M. Chergui, Photoexcitation of aqueous ruthenium(II)-tris-(2,2-bipyridine) with high-intensity femtosecond laser pulses. J. Phys. Chem. B 110, 26497–26505 (2006)

    Google Scholar 

  255. D.J. Thiel, P. Livins, E.A. Stern, A. Lewis, Microsecond-resolved XAFS of the triplet excited state of \(\mathrm {Pt}_2(\mathrm {P}_2 \mathrm {O}_5 \mathrm {H}_5)_4^{4-}\). Nature 362, 40–43 (1993)

    Google Scholar 

  256. D.W. Thompson, A. Ito, T.J. Meyer, [Ru(bpy)3]2+∗ and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure Appl. Chem. 85, 1257–1305 (2013)

    Google Scholar 

  257. A. Tissot, R. Bertoni, E.C.L. Toupet, M.-L. Boillot, The cooperative spin-state transition of an iron(III) compound [FeIII(3 −MeO − SalEen)2]PF6: thermal- vs. ultra-fast photo-switching. J. Mater. Chem. 21, 18347–18353 (2011)

    Google Scholar 

  258. J. Tribollet, G. Galle, G. Jonusauskas, D. Deldicque, M. Tondusson, J.-F. Létard, E. Freysz, Transient absorption spectroscopy of the iron(II) [Fe(phen)3]2+ complex: study of the non-radiative relaxation of an isolated iron(II) complex. Chem. Phys. Lett. 513, 42–47 (2011)

    ADS  Google Scholar 

  259. D.H. Turner, G.W. Flynn, N. Sutin, J.V. Beitz, Laser Raman temperature-jump study of the kinetics of the triiodide equilibrium. Relaxation times in the 10−8–10−7 second range. J. Am. Chem. Soc. 94, 554–1559 (1972)

    Google Scholar 

  260. R.M. van der Veen, C.J. Milne, A. El Nahhas, F.A. Lima, V. Pham, J. Best, J.A. Weinstein, C.N. Borca, R. Abela, C. Bressler, M. Chergui, Structural determination of a photochemically active diplatinum molecule by time-resolved EXAFS spectroscopy. Angew. Chem. Int. Ed. 48, 2711–2714 (2009)

    Google Scholar 

  261. B.E. Van Kuiken, M. Khalil, Simulating picosecond iron K-edge X-ray absorption spectra by Ab initio methods to study photoinduced changes in the electronic structure of Fe(II) spin crossover complexes. J. Phys. Chem. A 115, 10749–10761 (2011)

    Google Scholar 

  262. B.E. Van Kuiken, H. Cho, K. Hong, M. Khalil, R.W. Schoenlein, T.K. Kim, N. Huse, Time-resolved X-ray absorption spectroscopy in the water window: elucidating transient valence charge distributions in an aqueous Fe(II) complex. J. Phys. Chem. Lett. 7, 465–470 (2016)

    Google Scholar 

  263. J.H. van Santen, J.S. van Wieringen, Some remarks on the ionic radii of iron-group elements. The influence of crystalline field. Recl. Trav. Chim. Pays-Bas 420–430 (1952). https://doi.org/10.1002/recl.19520710502

  264. M. van Veenendaal, J. Chang, A.J. Fedro, Model of ultrafast intersystem crossing in photoexcited transition metal organic compounds. Phys. Rev. Lett. 104, 067401 (2010)

    ADS  Google Scholar 

  265. M. van Veenendaal, Ultrafast intersystem crossings in Fe-Co Prussian blue analogues. Sci. Rep. 7, 6672 (2017)

    ADS  Google Scholar 

  266. J.H. van Vleck, Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys. Rev. 41, 208 (1932)

    ADS  Google Scholar 

  267. J.H. van Vleck, Valence strength and the magnetism of complex salts. J. Chem. Phys. 3, 807 (1935)

    ADS  Google Scholar 

  268. G. Vankó, T. Neisius, G. Molnár, F. Renz, S. Kárpáti, A. Shukla, F.M.F. de Groot, Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. J. Phys. Chem. B 110, 11647–11653 (2006)

    Google Scholar 

  269. G. Vankó, P. Glatzel, V.-T. Pham, R. Abela, D. Grolimund, C.N. Borca, S.L. Johnson, C.J. Milne, C. Bressler, Picosecond time-resolved X-ray emission spectroscopy: ultrafast spin-state determination in an iron complex. Angew. Chem. Int. Ed. 49, 5910–5912 (2010)

    Google Scholar 

  270. G. Vankó, A. Bordage, P. Glatzel, E. Gallo, M. Rovezzi, W. Gawelda, A. Galler, C. Bressler, G. Doumy, A.M. March, E.P. Kanter, L. Young, S.H. Southworth, S.E. Canton, J. Uhlig, G. Smolentsev, V. Sundström, K. Haldrup, T.B. van Driel, M.M. Nielsen, K.S. Kjaer, H.T. Lemke, Spin-state studies with XES and RIXS: from static to ultrafast. J. Electron Spectrosc. Relat. Phenom. 188, 166–171 (2013)

    Google Scholar 

  271. G. Vankó, A. Bordage, M. Pápai, K. Haldrup, P. Glatzel, A.M. March, G. Doumy, A. Britz, A. Galler, T. Assefa, D. Cabaret, A. Juhin, T.B. van Driel, K.S. Kjær, A. Dohn, K.B. Møller, H.T. Lemke, E. Gallos, M. Rovezzi, Z. Németh, E. Rozsályi, T. Rozgonyi, J. Uhlig, V. Sundström, M.M. Nielsen, L. Young, S.H. Southworth, C. Bressler, W. Gawelda, Detailed characterization of a nanosecond-lived excited state: X-ray and theoretical investigation of the quintet state in photoexcited [Fe(terpy)2]2+. J. Phys. Chem. C 119, 5888–5902 (2015)

    Google Scholar 

  272. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)

    ADS  Google Scholar 

  273. R.S. von Bordwehr, A history of X-ray absorption fine structure. Ann. Phys. Fr. 14, 377–465 (1989)

    ADS  Google Scholar 

  274. P.D. Welch, The use of fast Fourier transform for the estimate of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)

    ADS  Google Scholar 

  275. O.S. Wenger, Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 140, 13522–13533 (2018)

    Google Scholar 

  276. A.H. White, R. Roper, E. Kokot, H. Waterman, R.L. Martin, The anomalous paramagnetism of iron(II) NN-dialkyldithiocarbamates. Aust. J. Chem. 17, 294–303 (1964)

    Google Scholar 

  277. R.J. Williams, The absorption spectra of some complex ions of analytical importance. J. Chem. Soc. 137–145 (1956). https://doi.org/10.1039/JR9550000137

  278. M.M.N. Wolf, R. Groß, C. Schumann, J.A. Wolny, V. Schünemann, A. Døssing, H. Paulsen, J.J. McGarvey, R. Diller, Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes. Phys. Chem. Chem. Phys. 10, 4264–4273 (2008)

    Google Scholar 

  279. C.-L. Xie, D.N. Hendrickson, Mechanism of spin-state interconversion in ferrous spin-crossover complexes: direct evidence for quantum mechanical tunneling. J. Am. Chem. Soc. 109, 6981–6988 (1987)

    Google Scholar 

  280. X. Zhang, L.M.L. Daku, J. Zhang, K. Suarez-Alcantara, G. Jennings, C.A. Kurtz, S.E. Canton, Dynamic Jahn–Teller effect in the metastable high-spin state of solvated [Fe(terpy)2]2+. J. Phys. Chem. C 119, 3312–3321 (2015)

    Google Scholar 

  281. X. Zhang, S. Mu, G. Chastanet, N. Daro, T. Palamarciuc, P. Rosa, J.-F. Létard, J. Liu, G.E. Sterbinsky, D.A. Arena, C. Etrillard, B. Kundys, B. Doudin, P.A. Dowben, Complexities in the molecular spin crossover transition. J. Phys. Chem. C 119, 16293–16302 (2015)

    Google Scholar 

  282. K. Yamasaki, Absorptionsspecktren von Metallkomplexsalzen des 2,2-Bipyridyls. I. Bull. Chem. Soc. Jpn. 12, 390–394 (1937)

    Google Scholar 

  283. A. Yeh, C.V. Shank, J.K. McCusker, Ultrafast electron localization dynamics following photo-induced charge transfer. Science 89, 935–938 (2000)

    ADS  Google Scholar 

  284. S. Záliš, C. Consani, A. El Nahhas, A. Cannizzo, M. Chergui, F. Hartl, A. Vl\(\check {\mathbf {c}}\)ek Jr., Origin of electronic absorption spectra of MLCT-excited and one-electron reduced 2,2-bipyridine and 1,10-phenanthroline complexes. Inorganica Chim. Acta 374, 578–585 (2011)

    Google Scholar 

  285. S. Zerdane, L. Wilbsraham, M. Cammarata, O. Iasco, E. Rivière, M.-L. Boillot, I. Ciofini, E. Collet, Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping. Chem. Sci. 8, 4978–4986 (2017)

    Google Scholar 

  286. W. Zhang, K.J. Gaffney, Mechanistic studies of photoinduced spin crossover and electron transfer in inorganic complexes. Acc. Chem. Res. 48, 1140–1148 (2015)

    Google Scholar 

  287. W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R.G. Hadt, R.W. Hartsock, T. Kroll, K.S. Kjæ, K. Kubiček, H.T. Lemke, H.W. Liang, D.A. Meyer, M.M. Nielsen, C. Purser, J.S. Robinson, E.I. Solomon, Z. Sun, D. Sokaras, T.B. van Driel, G. Vankó, T.-C. Weng, D. Zhu, K.J. Gaffney, Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014)

    ADS  Google Scholar 

  288. W. Zhang, K.S. Kjær, R. Alonso-Mori, U. Bergmann, M. Chollet, L.A. Fredin, R.G. Hadt, R.W. Hartsock, T. Harlang, T. Kroll, K. Kubiček, H.T. Lemke, H.W. Liang, Y. Liu, M.M. Nielsen, P. Persson, J.S. Robinson, E.I. Solomon, Z. Sun, D. Sokaras, T.B. van Driel, T.-C. Weng, D. Zhu, K. Wärnmark, V. Sundström, K.J. Gaffney, Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution. Chem. Sci. 8, 515–523 (2017)

    Google Scholar 

  289. Y. Zhang, K. Bennett, S. Mukamel, Monitoring ultrafast spin crossover intermediates in an iron(II) complex by broad band stimulated X-ray Raman spectroscopy. J. Phys. Chem. A 122, 6524–6531 (2018)

    Google Scholar 

  290. R. Zimmermann, A model for high-spin/low-spin transitions with an interpretation of thermal hysteresis effects. J. Phys. Chem. Solids 44, 151–158 (1983)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Photoinduced Spin Crossover in Iron(II) Systems. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_5

Download citation

Publish with us

Policies and ethics