Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 387 Accesses

Abstract

The focus of this chapter is a study that uses UED to probe the atomic motions that take place during the ‘photocyclization’ or photoinduced ring-closing reaction of the molecule 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene, herein abbreviated to PFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An aryl is any molecular substituent derived from an aromatic ring, e.g. phenyl (C6H5–) is the aryl of benzene (C6H6).

  2. 2.

    The prefixes cis and trans denote the side on which a pair of functional groups is relative to a carbon chain: cis = same side; trans = opposite sides.

  3. 3.

    In benzene.

  4. 4.

    Absorption of PFC in n-hexane: λ max = 268 nm (OR) and 562 nm (CR), 𝜖 = 2.84 × 104 M−1 cm−1 (OR) and 1.09 × 104 M−1 cm−1 (CR) [244].

  5. 5.

    The plane wave cut-off is set at 400 eV; the electronic Brillouin zone is sampled at the \((0 \frac {1}{4} 0)\) k-point only; the default ultrasoft pseudopotentials in CASTEP are used; energies and forces are corrected for dispersion interactions as in Ref. [190].

  6. 6.

    An active space consisting of 10 canonical π- and π -type orbitals is used.

  7. 7.

    As measured by the distance between the methyl groups ortho to the reactive carbon atoms.

References

  1. J. Bao, P.M. Weber, Electronic effects on photochemistry: the diverse reaction dynamics of highly excited stilbenes and azobenzene. J. Am. Chem. Soc. 133, 4164–4167 (2011)

    Article  Google Scholar 

  2. M. Boggio-Pasqua, M. Ravaglia, M.J. Bearpark, M. Garavelli, M.A. Robb, Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics. J. Phys. Chem. A 107, 11139–11152 (2003)

    Google Scholar 

  3. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  4. P.R. Hania, A. Pugzlys, L.N. Lucas, J.J.D. de Jong, B.L. Feringa, J.H. van Esch, H.T. Jonkman, K. Duppen, Ring closure dynamics of BTE-based photochromic switches: perfluoro- versus perhydrocyclopentene derivatives. J. Phys. Chem. A 109, 9437–9442 (2005)

    Article  Google Scholar 

  5. K. Higashiguchi, K.M. Kenji, S.K.T. Yamada, T. Kawai, M. Irie, Fatigue mechanism of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bull. Chem. Soc. Jpn. 73, 2389–2394 (2000)

    Article  Google Scholar 

  6. M. Irie, Advances in photochromic materials for optical data storage media. Jpn. J. Appl. Phys. 28, 215–219 (1989)

    Article  Google Scholar 

  7. M. Irie, Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000)

    Article  Google Scholar 

  8. M. Irie, M. Mohri, Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J. Org. Chem. 53 803–808 (1988)

    Google Scholar 

  9. M. Irie, K. Sakemura, M. Okinaka, K. Uchida, Photochromism of dithienylethenes with electron-donating substituents. J. Org. Chem. 60, 8305–8309 (1995)

    Article  Google Scholar 

  10. M. Irie, T. Lifka, K. Uchida, S. Kobatake, Y. Shindo, Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem. Commun. 1999, 47–750 (1999)

    Google Scholar 

  11. M. Irie, S. Kobatake, M. Horichi, Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291, 1769–1772 (2001)

    Article  ADS  Google Scholar 

  12. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014)

    Article  Google Scholar 

  13. Y. Ishibashi, K. Tani, H. Miyasaka, S. Kobatake, M. Irie, Picosecond laser photolysis study of cycloreversion reaction of a diarylethene derivative in polycrystals: multiphoton-gated reaction. Chem. Phys. Lett. 437, 243–247 (2007)

    Article  ADS  Google Scholar 

  14. H. Jean-Ruel, R.R. Cooney, M. Gao, C. Lu, M.A. Kochman, C.A. Morrison, R.J.D. Miller, Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals. J. Phys. Chem. A 115, 13158–13168 (2011)

    Article  Google Scholar 

  15. H. Jean-Ruel, M. Gao, M.A. Kochman, C. Lu, L. Liu, R.R. Cooney, C.A. Morrison, R.J.D. Miller, Ring-closing reaction in diarylethene captured by femtosecond electron crystallography. J. Phys. Chem. B 117, 15894–15902 (2013)

    Article  Google Scholar 

  16. M.A. Kochman, C.A. Morrison, Hybrid QM/QM simulations of excited-state intramolecular proton transfer in the molecular crystal 7-(2-Pyridyl)-indole. J. Chem. Theor. Comput. 9, 1182–1192 (2013)

    Article  Google Scholar 

  17. H. Miyasaka, T. Nobuto, A. Itaya, N. Tamai, M. Irie, Picosecond laser photolysis studies on a photochromic dithienylethene in solution and in crystalline phases. Chem. Phys. Lett. 269, 281–285 (1997)

    Article  ADS  Google Scholar 

  18. E. Pontecorvo, C. Ferrante, C.G. Elles, T. Scopigno, Structural rearrangement accompanying the ultrafast electrocyclization reaction of a photochromic molecular switch. J. Phys. Chem. B 118, 6915–6921 (2014)

    Article  Google Scholar 

  19. S.T. Repinec, R.J. Sension, A.Z. Szarka, R.M. Hochstrasser, Femtosecond laser studies of the cis-stilbene photoisomerization reactions. The cis-stilbene to dihydrophenanthrene reaction. J. Phys. Chem. 95, 10380–10385 (1991)

    Google Scholar 

  20. H.M. Senn, W. Thiel, QM/MM methods for biological systems, in Atomistic Approaches in Modern Biology, vol. 268. Topics in Current Chemistry, ed. by M. Reiher (Springer, Berlin, 2006), pp. 173–290

    Google Scholar 

  21. K. Shibata, K. Muto, S. Kobatake, M. Irie, Photocyclization/cycloreversion quantum yields of diarylethenes in single crystals. J. Phys. Chem. A 106, 209–214 (2002)

    Article  Google Scholar 

  22. G. Szalóki, J.-L. Pozzo, Synthesis of symmetrical and nonsymmetrical bisthienylcyclopentenes. Chem. Eur. J. 19 11124–11132 (2013)

    Article  Google Scholar 

  23. K. Tani, Y. Ishibashi, H. Miyasaka, S. Kobatake, M. Irie, Dynamics of cyclization, cycloreversion, and multiphoton-gated reaction of a photochromic diarylethene derivative in crystalline phase. J. Phys. Chem. C 112, 11150–11157 (2008)

    Article  Google Scholar 

  24. T. Vreven, K. Morokuma, Hybrid methods: ONIOM (QM:MM) and QM/MM, in Annual Reports in Computational Chemistry, chapter 3, vol. 2, ed. by D.C. Spellmeyer (Elsevier, Amsterdam, 2006), pp. 31–51

    Google Scholar 

  25. C.L. Ward, C.G. Elles, Controlling the excited-state reaction dynamics of a photochromic molecular switch with sequential two-photon excitation. J. Phys. Chem. Lett. 2012, 2995–3000 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Photocyclization Dynamics of Diarylethene. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_4

Download citation

Publish with us

Policies and ethics