Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

In this chapter, I will present two studies on the photoinduced structural dynamics of the crystalline material (EDO-TTF)2X. For context, a general overview of this molecular system will be given. This is followed by a description of the experimental procedure and a discussion of the results from the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Albert Szent-Györgyi (1893–1986) is a Hungarian biochemist who won the Nobel Prize in Physiology or Medicine in 1937 for his work in vitamin C and the chemistry of cellular respiration [191].

  2. 2.

    ‘Organic’ originally refers to that which is solely derived from living organisms; it has now been generalized to describe chemistry that involves the element carbon, often in association with other nonmetals.

  3. 3.

    This work netted the 2000 Nobel Prize in Chemistry for Alan J. Heeger (1936–present), Alan G. MacDiarmid (1927–2007), and Hideki Shirakawa (1936–present) [186].

  4. 4.

    A molecule is said to be aromatic when it has a flat ring of atoms bound together by an set of overlapping p orbitals.

  5. 5.

    Rudolf E. Peierls (1907–1995) noted in 1954 that one-dimensional periodic arrangements of atoms with delocalized electrons tend to dimerize due to electron–phonon coupling [437].

  6. 6.

    Named for Danish chemist Klaus Bechgaard (1945–2017) and French chemist Jean-Marc Fabre (1943–present) who respectively first synthesized the selenium (TMTSF) and sulfur (TMTTF) derivatives of TMTCF [444].

  7. 7.

    Chalcogens are chemical elements in group 16 of the periodic table, e.g. sulfur and selenium; pnictogens are those in group 15, e.g. phosphorus and antimony.

  8. 8.

    German physicist Paul Drude (1863–1906) studied optical phenomena from the perspective of electromagnetism and introduced a classical model of metals to explain their transport properties [274].

  9. 9.

    Hole-wise, \(\frac {1}{4}\)-filled; each of the two EDO-TTF molecules has two valence electrons and one of the four in total is transferred to the PF6 molecule.

  10. 10.

    The curvature of the EDO-TTF molecule refers to the sum of the dihedral angles of the atom chain O–C–S–C and C=C–S–C; ‘flat’: 1.87∘, ‘nearly flat’: 2.08∘, ‘bent’: 13.42∘.

  11. 11.

    More precisely, nearly flat: + (0.6 ± 0.1)e, flat: + (0.8 ± 0.1)e, and bent: + (0.2 ± 0.1)e [9].

  12. 12.

    Hungarian physicist and Nobel laureate Eugene P. Wigner (1902–1995) predicted in 1934 that a free electron gas would crystallize in the limit of zero kinetic energy [337, 557].

  13. 13.

    American physicist Theodore D. Holstein (1915–1985) [141] introduced in a series of papers [228] an eponymous electron–phonon coupling Hamiltonian that describes electrons hopping around a fixed lattice of local oscillators; British physicist John Hubbard (1931–1980) [454] also introduced around the same time [233] a now-classic Hamiltonian that models a system of hopping electrons that experience short- (on-site) and intermediate- (nearest-neighbour) range Coulomb repulsion.

  14. 14.

    A third CT band (CT3) at 6150 cm−1 (= 0.76 eV), more clearly seen on shoulder of CT1 below 100 K, is assigned to an excitation to a mixture of the (1010) and (2000) states [135].

  15. 15.

    Dutch physicist Hendrik A. Kramers (1894–1952) and German physicist Ralph de L. Kronig (1904–1995) independently showed that the dispersive and absorptive properties of a medium are related from one to another and can be calculated using a set of mathematical equations now known as the Kramers-Kronig relations [306, 308, 515].

  16. 16.

    French engineer Étienne-Louis Malus (1775–1812) discovered that transmission of polarized light through a dichroic material varies as \(\cos ^2(\theta )\), where θ is the polarization angle of the light [100].

  17. 17.

    The R-factor is a measure of agreement between the structure factor values calculated from a crystallographic model and those which are experimentally observed; it is defined as .

  18. 18.

    Named for Wolfgang Pauli (1900–1958) and his eponymous exclusion principle, Pauli paramagnetism refers to the tendency of a ‘metal’ to become weakly magnetized under an applied magnetic field as its free electrons align with the field [13, 181].

  19. 19.

    dmit = dimercaptoisotrithione or 1,3-dithiol-2-thione-4,5-dithiolate, Et = C2H5, and Me = CH3.

References

  1. H. Akamatu, H. Inokuchi, Y. Matsunaga, Electrical conductivity of the perylene-bromine complex. Nature 173, 168–169 (1954)

    ADS  Google Scholar 

  2. S. Aoyagi, K. Kato, A. Ota, H. Yamochi, G. Saito, H. Suematsu, M. Sakata, M. Takata, A novel metal–insulator phase transition observed in (EDO-TTF)2PF6. Angew. Chem. 12, 2600–2602 (2002)

    Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  4. K. Bechgaard, D. Jérome, Organic superconductors. Sci. Am. 50, 52–61 (1982)

    Google Scholar 

  5. K. Bechgaard, C.S. Jacobsen, K. Mortensen, H.J. Pedersen, N. Thorup, The properties of five highly conducting salts: (TMTSF)2X, X = PF\({ }_{6}^{-}\) AsF\({ }_{6}^{-}\), SbF\({ }_{6}^{-}\) BF\({ }_{4}^{-}\) and NO\({ }_{3}^{-}\) derived from tetramethyltetraselenafulvalene (TMTSF). Solid State Commun. 33, 1119–1125 (1980)

    Google Scholar 

  6. K. Bechgaard, K. Carneiro, M. Olsen, F.B. Rasmussen, C.S. Jacobsen, Zero-pressure organic superconductor: di-(tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett. 46, 852 (1981)

    ADS  Google Scholar 

  7. M. Chollet, L. Guerin, N. Uchida, S. Fukaya, H. Shimoda, T. Ishikawa, K. Matsuda, T. Hasegawa, A. Ota, H. Yamochi, G. Saito, R. Tazaki, S.-i. Adachi, S.-Y. Koshihara, Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6. Science 307, 86–89 (2004)

    ADS  Google Scholar 

  8. D.S. Chow, F. Zamborszky, B. Alavi, D.J. Tantillo, A. Baur, C.A. Merlic, S.E. Brown, Charge ordering in the TMTTF family of molecular conductors. Phys. Rev. Lett. 85, 1698 (2000)

    ADS  Google Scholar 

  9. R.T. Clay, S. Mazumdar, D.K. Campbell, Pattern of charge ordering in quasi-one-dimensional organic charge-transfer solids. Phys. Rev. B 67, 115121 (2003)

    ADS  Google Scholar 

  10. L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, A.J. Heeger, superconducting fluctuations and the Peierls instability in an organic solid. Solid State Commun. 12, 1125–1132 (1973)

    Google Scholar 

  11. E. Collett, Field Guide to Polarization (SPIE Press, Bellingham, 2005)

    Google Scholar 

  12. P. Coppens, Synchrotron Radiation Crystallography (Academic, London, 1992)

    Google Scholar 

  13. P. Coppens, D.V. Fomitchev, M.D. Carducci, K. Culp, Crystallography of molecular excited states. Transition-metal nitrosyl complexes and the study of transient species. J. Chem. Soc. Dalton Trans. 6, 865–872 (1998)

    Google Scholar 

  14. M. Dressel, Ordering phenomena in quasi-one-dimensional organic conductors. Naturwissenschaften 94, 527–541 (2007)

    ADS  Google Scholar 

  15. M. Dressel, M. Dumm, T. Knoblauch, M. Masino, Comprehensive optical investigations of charge order in organic chain compounds (TMTTF)2X. Crystals 2, 528–578 (2012)

    Google Scholar 

  16. O. Drozdova, K. Yakushi, A. Ota, H. Yamochi, G. Saito, Spectroscopic study of the [0110] charge ordering in (EDO-TTF)2PF6. Synth. Met. 133, 277–279 (2003)

    Google Scholar 

  17. O. Drozdova, K. Yakushi, K. Yamamoto, A. Ota, H. Yamochi, G. Saito, H. Tashiro, D.B. Tanner, Optical characterization of 2k F bond-charge-density wave in quasi-one-dimensional \(\frac {3}{4}\)-filled (EDO-TTF)2X (X = PF6 and AsF6). Phys. Rev. B 70, 075107 (2004)

    Google Scholar 

  18. D. Emin, M.P. Garfunkel, M. Levy, B.M.K. Nefkens, H. Scher, Theodore David Holstein. Phys. Today 39, 74 (1986)

    Google Scholar 

  19. J.-P. Farges (ed.), Organic Conductors: Fundamentals and Applications (CRC Press, New York, 1994)

    Google Scholar 

  20. J. Ferraris, D.O. Cowan, V.V. Walatka, J.H. Perlstein, Electron transfer in a new highly conducting donor–acceptor complex. J. Am. Chem. Soc. 95, 948 (1973)

    Google Scholar 

  21. N. Fukazawa, M. Shimizu, T. Ishikawa, Y. Okimoto, S.-Y. Koshihara, T. Hiramatsu, Y. Nakano, H. Yamochi, G. Saito, K. Onda, Charge and structural dynamics in photoinduced phase transition of (EDO-TTF)2PF6 examined by picosecond time-resolved vibrational spectroscopy. J. Phys. Chem. C 116, 5892–5899 (2012)

    Google Scholar 

  22. N. Fukazawa, T. Tanaka, T. Ishikawa, Y. Okimoto, S.-Y. Koshihara, T. Yamamoto, M. Tamura, R. Kato, K. Onda, Time-resolved infrared vibrational spectroscopy of the photoinduced phase transition of Pd(dmit)2 salts having different orders of phase transition. J. Phys. Chem. C 117, 13187–13196 (2013)

    Google Scholar 

  23. M. Gao, H. Jean-Ruel, R.R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, R.J.D. Miller, Full Characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Opt. Express 20, 12048–12058 (2012)

    ADS  Google Scholar 

  24. M. Gao, C. Lu, H. Jean-Ruel, L. Liu, A. Marx, K. Onda, S.-Y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R.R. Cooney, G. Moriena, G. Sciaini, R.J.D. Miller, Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013)

    ADS  Google Scholar 

  25. M. Gao, Y. Jiang, G.H. Kassier, R.J.D. Miller, Single shot time stamping of ultrabright radio frequency compressed electron pulses. Appl. Phys. Lett. 103, 033503 (2013)

    ADS  Google Scholar 

  26. D.A. Glaser, Nobel Lectures: Physics 1942–1962 (Elsevier, Amsterdam, 1964)

    Google Scholar 

  27. I. Grenthe (ed.), Nobel Lectures: Chemistry 1996–1980 (World Scientific, Singapore, 2003)

    Google Scholar 

  28. H. Grünewald, Nobel Lectures: Physiology or Medicine 1922–1941 (Elsevier, Amsterdam, 1965)

    Google Scholar 

  29. M. Harb, Investigating photoinduced structural changes in Si using femtosecond electron diffraction. PhD thesis, University of Toronto, 2009

    Google Scholar 

  30. M. Harb, W. Peng, G. Sciaini, C.T. Hebeisen, R. Ernstorfer, M.A. Eriksson, M.G. Lagally, S. Kruglik, R.J.D. Miller, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si. Phys. Rev. B 79, 094301 (2009)

    ADS  Google Scholar 

  31. K. Hiraki, K. Kanoda, Wigner crystal type of charge ordering in an organic conductor with a quarter-filled band: (DI-DCNQI)2Ag. Phys. Rev. Lett. 80, 4737 (1998)

    ADS  Google Scholar 

  32. T. Holstein, Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)

    MATH  Google Scholar 

  33. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238–257 (1963)

    ADS  Google Scholar 

  34. M. Ishikawa, Y. Nakano, M. Uruichi, A. Otsuka, K. Yakushi, H. Yamochi, Structural and physical properties of (EDO-TTF-Cl)2XF6 (X =  As, Sb): geometrical aspects for monosubstituted EDO-TTF (EDO-TTF =  4,5-ethylenedioxy tetrathiafulvalene). Eur. J. Inorg. Chem. 2014, 3941–3948 (2014)

    Google Scholar 

  35. D. Jérome, The physics of organic superconductors. Science 252, 1509–1514 (1991)

    ADS  Google Scholar 

  36. D. Jérome, H.J. Schulz, Organic conductors and superconductors. Adv. Phys. 31, 299–490 (1982)

    ADS  Google Scholar 

  37. D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J. Phys. Lett. 41, 95–98 (1980)

    Google Scholar 

  38. C. Jungnickel, R. McCormmach, Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein (University of Chicago Press, Chicago, 1986)

    MATH  Google Scholar 

  39. F.O. Karutz, J.U. Schütz, H. Wachtel, H.C. Wolf, Optically reversed peierls transition in crystals of Cu(dicyanoquinonediimine)2. Phys. Rev. Lett. 81, 140–143 (1998)

    ADS  Google Scholar 

  40. W. Kaszub, Photo-induced phase transitions in molecular materials. PhD thesis, Université de Rennes 1, 2012

    Google Scholar 

  41. T.J. Kistenmacher, Cavity size versus anion size in (TMTSF)2X salts: possible implications for the uniqueness of (TMTSF)2ClO4. Solid. State Commun. 50, 729–733 (1984)

    ADS  Google Scholar 

  42. B. Köhler, E. Rose, M. Dumm, G. Untereiner, M. Dressel, Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional (TMTTF)2X salts (X = PF6 AsF6 SbF6 BF4 ClO4 ReO4). Phys. Rev. B 84, 035124 (2011)

    ADS  Google Scholar 

  43. S.-Y. Koshihara, Photoinduced phase transitions and cooperative phenomena, in Optical Properties of Low-Dimensional Materials, vol. 2, ed. by T. Ogawa, Y. Kanemitsu (World Scientific, Singapore, 1998), pp. 129–177

    Google Scholar 

  44. S.-Y. Koshihara, Y. Tokura, T. Mitani, G. Saito, T. Koda, Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 44, 6853–6856 (1990)

    ADS  Google Scholar 

  45. H.A. Kramers, La Diffusion de la lumi’ere par les atomes, in Atti del Congresso internazionale dei Fisici, Bologna, vol. 1, 1927, ed. by N. Zanichelli, pp. 545–557

    Google Scholar 

  46. R. de L. Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926)

    Google Scholar 

  47. W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416 (1964)

    ADS  Google Scholar 

  48. L. Liu, Y. Jiang, H.M. Müller-Werkmeister, C. Lu, G. Moriena, M. Ishikawa, Y. Nakano, H. Yamochi, R.J.D. Miller, Ultrafast electron diffraction study of single-crystal (EDO-TTF)2SbF6: counterion effect and dimensionality reduction. Chem. Phys. Lett. 683, 160–165 (2017)

    ADS  Google Scholar 

  49. M. Lorenc, N. Moisan, M. Servol, H. Cailleau, S.-Y. Koshihara, M. Maesato, X. Shao, Y. Nakano, H. Yamochi, G. Saito, E. Collet, Multi-phonon dynamics of the ultrafast photoinduced transition of (EDO-TTF)2SbF6. J. Phys. Conf. Ser. 148, 012001 (2009)

    Google Scholar 

  50. M. Lorenc, J. Hébert, N. Moisan, E. Trzop, M. Servol, M. Buron-Le Cointe, H. Cailleau, M.-L. Boillot, E. Pointecorvo M. Wulff, S.-Y. Koshihara, E. Collet, Successive dynamical steps of photoinduced switching of a molecular Fe(III) spin-crossover material by time-resolved X-ray diffraction. Phys. Rev. Lett. 103, 028301 (2009)

    ADS  Google Scholar 

  51. S. Lundqvist (ed.), Nobel Lectures: Physics 1963–1970 (World Scientific, Singapore, 1998)

    Google Scholar 

  52. M. Maesato, Y. Nakano, X. Shao, Y. Yoshida, H. Yamochi, G. Saito, A. Moreac, J.-C. Ameline, E. Collet, M. Uruichi, K. Yakushi, Control of metal-insulator transition in (EDO-TTF)2SbF6. J. Phys. Conf. Ser. 148, 012004 (2009)

    Google Scholar 

  53. C. Mézière, M. Fourmigué, J.-M. Fabre, Efficient synthesis of ethylenedioxytetrathiafulvalene (EDO-TTF) and analysis of the role of S…S Van Der Waals interactions in the crystal chemistry of neutral TTF derivatives. C. R. Acad. Sci. Ser. IIc: Chim. 3, 387–395 (2000)

    Google Scholar 

  54. R.J.D. Miller, Ultrafast imaging of photochemical dynamics: roadmap to a new conceptual basis for chemistry. Faraday Discuss. 194, 777–828 (2016)

    ADS  Google Scholar 

  55. N. Moisan, Photo-commutations de matériaux moléculaires étudiées par optique pompe-sonde ultra-rapide. PhD thesis, Université de Rennes 1, 2008

    Google Scholar 

  56. T. Mori, H. Inokuchi, A.M. Kini, J.M. Williams, Unsymmetrically substituted ethylenedioxytetrathiafulvalenes. Chem. Lett. 19, 1279–1282 (1990)

    Google Scholar 

  57. Y. Nakano, H. Yamochi, G. Saito, M. Uruichi, K. Yakushi, Anion size and isotope effects in (EDO-TTF)2SbF6. J. Phys. Conf. Ser. 148, 012007 (2009)

    Google Scholar 

  58. Y. Nakano, K. Balodis, H. Yamochi, G. Saito, M. Uruichi, K. Yakushi, Isotope effect on metal–insulator transition of (EDO-TTF)2XF6 (X =  P, As) with multi-instability of metallic state. Solid State Sci. 10, 1780–1785 (2009)

    ADS  Google Scholar 

  59. K. Nasu (ed.), Photoinduced Phase Transitions (World Scientific, Singapore, 2004)

    MATH  Google Scholar 

  60. K. Onda, S. Ogihara, K. Yonemitsu, N. Maeshima, T. Ishikawa, Y. Okimoto, X. Shao, Y. Nakano, H. Yamochi, G. Saito, S.-Y. Koshihara, Photoinduced change in the charge order pattern in the quarter-filled organic conductor (EDO-TTF)2PF6 with a strong electron-phonon interaction. Phys. Rev. Lett. 101, 067403 (2008)

    ADS  Google Scholar 

  61. K. Onda, H. Yamochi, S.-Y. Koshihara, Diverse photoinduced dynamics in an organic charge-transfer complex having strong electron-phonon interactions. Acc. Chem. Res. 47, 3494–3503 (2014)

    Google Scholar 

  62. A. Ota, H. Yamochi, G. Saito, A novel metal–insulator phase transition observed in (EDO-TTF)2PF6. J. Mater. Chem. 12, 2600–2602 (2002)

    Google Scholar 

  63. A. Ota, H. Yamochi, G. Saito, A novel metal–insulator transition in (EDO-TTF)2X (X = PF6 AsF6). Synth. Met. 133, 463–465 (2003)

    Google Scholar 

  64. A. Ota, H. Yamochi, G. Saito, Coexistence of quasi-one- and -two-dimensional electronic structures in (EDO-TTF)2X (X = GaCl4 ReO4). J. Low Temp. Phys. 142, 425–428 (2006)

    ADS  Google Scholar 

  65. G. Papavassiliou, V.C. Kakoussis, D.J. Lagouvardos, G.A. Mousdis, Transition-metal 1,2 diheterolenes and polyheterotetra-heterafulvalenes: pre-cursors of conducting solids. Mol. Cryst. Liq. Cryst. 181, 171–184 (1990)

    Google Scholar 

  66. R. Peierls, Bird of Passage, Recollections of a Physicist (Princeton University Press, Princeton, 1985)

    Google Scholar 

  67. J.-P. Pouget, Structural aspects of the Bechgaard and Fabre salts: an update. Crystals 2, 466–520 (2012)

    Google Scholar 

  68. J.-P. Pouget, P. Alemany, E. Canadell, Donor-anion interactions in quarter-filled low-dimensional organic conductors. Mater. Horiz. 5, 590–640 (2018)

    Google Scholar 

  69. R. Ranner, Brief Introduction to Ultramicrotomy (Leica Microsystems GmbH, Wetzlar, 2014)

    Google Scholar 

  70. T.M. Rice, Commemoration of John Hubbard (1931–1980), in Disordered Systems and Localization, ed. by C. Castellani, C.D. Castro, L. Peliti. Lecture Notes in Physics, vol. 149 (Springer, Berlin, 1981), pp. 1–2

    Google Scholar 

  71. J.R. Rumble (ed.), CRC Handbook of Chemistry and Physics, 99th edn. (CRC Press, Boca Raton, 2018)

    Google Scholar 

  72. M. Schmidt, S. Rajagopal, Z. Ren, K. Moffat, Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys. J. 84, 2112–2129 (2003)

    ADS  Google Scholar 

  73. H. Seo, H. Fukuyama, Antiferromagnetic phases of one-dimensional quarter-filled organic conductors. J. Phys. Soc. Jpn. 66, 1249–1252 (1997)

    ADS  Google Scholar 

  74. M. Servol, N. Moisan, E. Collet, H. Cailleau, W. Kaszub, L. Toupet, D. Boschetto, T. Ishikawa, A. Moréac, S.-Y. Koshihara, M. Maesato, M. Uruichi, X. Shao, Y. Nakano, H. Yamochi, G. Saito, M. Lorenc, Local response to light excitation in the charge-ordered phase of (EDO-TTF)2SbF6. Phys. Rev. B 92, 024304 (2015)

    ADS  Google Scholar 

  75. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977). https://doi.org/10.1039/C39770000578

    Google Scholar 

  76. S.H. Strauss, The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927–942 (1993)

    Google Scholar 

  77. A. Szent-Györgyi, Towards a new biochemistry. Science 93, 609 (1941)

    ADS  Google Scholar 

  78. A. Szent-Györgyi, Internal photo-electric effect and band spectra in proteins. Nature 157, 875 (1946)

    ADS  Google Scholar 

  79. D. ter Haar, Master of Modern Physics: The Scientific Contributions of H. A. Kramers (Princeton University Press, Princeton, 1998)

    Google Scholar 

  80. K.C. Ung, S. Mazumdar, D. Toussaint, Metal-Insulator and insulator-insulator transitions in the quarter-filled band organic conductors. Phys. Rev. Lett. 73, 2603 (1994)

    ADS  Google Scholar 

  81. I.I. Vorontsov, P. Coppens, On the refinement of time-resolved diffraction data: comparison of the random-distribution and cluster-formation models and analysis of the light-induced increase in the atomic displacement parameters. J. Synchrotron Radiat. 12, 488–493 (2005)

    Google Scholar 

  82. E. Wigner, On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    MATH  ADS  Google Scholar 

  83. F. Wudl, G.M. Smith, E.J. Hufnagel, Bis-1,3-dithiolium chloride: an unusually stable organic radical cation. J. Chem. Soc. D 21, 1453–1454 (1970). https://doi.org/10.1039/C29700001453

    Google Scholar 

  84. J. Yamada, T. Sugimoto (eds.), TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene (Springer, Heidelberg, 2004)

    Google Scholar 

  85. K. Yonemitsu, N. Maeshima, Photoinduced melting of charge order in a quarter-filled electron system coupled with different types of phonons. Phys. Rev. B 76, 075105 (2007)

    ADS  Google Scholar 

  86. X. Zou, S. Hovmöller, P. Oleynikov, Electron Crystallography (Oxford University Press, Oxford, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Ultrafast Structural Dynamics of (EDO-TTF)2X. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_3

Download citation

Publish with us

Policies and ethics