Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 342 Accesses

Abstract

This chapter focuses on the methods—experimental and analytical—used to attain the results presented in Chaps. 37. Here, two experimental techniques will be described in detail: transient absorption (TA) spectroscopy and ultrafast electron diffraction (UED). I will outline the theoretical framework of the probe-sample interaction that is at the heart of each technique. I will also give an overview of the instrumentation that makes up the lab setups and detail the data-driven procedures used to characterize the experimental conditions, correct measurement artifacts, improve signal-to-noise ratios, and finally extract the relevant information from models for further interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Absorbance A is often used interchangeably with the term ‘optical density’ (OD); intensity I refers to the irradiance of the laser [239].

  2. 2.

    Developed by James Franck (1882–1964) and Edward Condon (1902–1974) in 1926, this principle states that an electronic transition is most likely to occur without changes in the nuclear positions and the transition probability is proportional to the square of the overlap integral between the two vibrational wavefunctions involved [107, 163].

  3. 3.

    Originating from American spectroscopist Michael Kasha (1920–2013) [280]. This ‘rule’ is a consequence of the relative density of states involved in these different types of vibrational-electronic (vibronic) transitions.

  4. 4.

    For a more detailed description of CPM, see Ref. [254].

  5. 5.

    Scottish physicist John Kerr (1824–1907) discovered in 1875 that the index of refraction of material can be modified by an electric field to the second order: . Kerr-lens modelocking involves an optical pulse so intense that it self-focuses under its own induced Δn and is self-selected when coupled with an aperture that blocks any other mode that fails to self-focus [45].

  6. 6.

    German physicist Friedrich Pockels (1865–1913) discovered in 1893 that the index of refraction of material can be modified by an electric field to the first order: . This effect can be used to quickly and precisely control the polarization of a light beam [45].

  7. 7.

    SHG is a nonlinear optical process whereby two photons with the same frequency interact in a medium to generate a single photon with double the frequency [45].

  8. 8.

    WLG is the conversion of laser light into light with a very broad spectral bandwidth (spanning hundreds of nanometers) via strongly nonlinear interactions in a medium [6, 389].

  9. 9.

    ‘Time-zero’ is the time delay at which there is temporal overlap of the pump and probe pulses.

  10. 10.

    For the experiments described in Sect. 5.2, the non-resonant samples are just blank sample media: deionized water in a quartz flow cell for the aqueous case, a sapphire window for the crystal case.

  11. 11.

    The IRF here is assumed to be Gaussian, given that it is a convolution of the nearly Gaussian temporal profile of the pump and probe pulses.

  12. 12.

    For reference, \( \left ( H(t - t_0) \text{e}^{-k t}\right ) \ast \text{e}^{- \frac {1}{2} t^2/\tau ^2} = \frac {1}{2} \text{e}^{\frac {1}{2} k^2 \tau ^2 - k (t - t_0)} \left ( 1 + \text{erf}\left ( \frac {t - t_0 - k \tau ^2}{\sqrt {2} \tau } \right ) \right )\).

  13. 13.

    Since the discovery of ‘quasicrystals’ in 1984 by Israeli material scientist Daniel Shechtman (1941–present) [480], crystals are now more accurately described as “any solids having an essentially discrete diffraction diagram” wherein 3D periodicity may be absent [240].

  14. 14.

    Moritz L. Frankenheim (1801–1869) first discovered in 1826 that they are no more than 15 distinct types of lattices in three dimensions. Auguste Bravais (1811–1863) later correctly revised this number to 14 [16].

  15. 15.

    In conventional crystallographic notation, the six lattice parameters are denoted by a, b, c, α, β, γ respectively. Here, this is done using the index notation for convenience.

  16. 16.

    William H. Miller (1801–1880) introduced this notation for crystal planes in 1839. The letters h, k, l are used therein most often; however, the labels h 1, h 2, h 3 are used instead here for convenient indexing. An overline indicates a negative number, \(\overline {h} = -h\).

  17. 17.

    A computationally more useful definition of the reciprocal lattice vectors is , where the vectors are in column representation.

  18. 18.

    Max v. Laue (1879–1960) was awarded the 1914 Nobel Prize in Physics for the discovery of X-ray diffraction. William L. Bragg (1890–1971), along with his father William H. Bragg (1862–1942), won the same award in 1915 for their work in X-ray crystallography [400].

  19. 19.

    Paul P. Ewald (1888–1985) conceived of the sphere-in-reciprocal-lattice construct to geometrically visualize diffraction in 1912 [145].

  20. 20.

    A ‘perfect’ crystal is one with unbroken discrete translational symmetry; ‘infinite’ refers to the absence of boundaries, and ‘static’, a lack of atomic motion.

  21. 21.

    These shapes are known in the literature as reciprocal lattice rods, or ‘relrods’ for short.

  22. 22.

    An amorphous material is one that lacks the long-range order of a crystal.

  23. 23.

    Paul Scherrer (1890–1969), under the guidance of Peter Debye (1884–1966), and Albert W. Hull (1880–1966) developed in 1915–1917 the method for analyzing X-ray crystal structures using powder samples instead of single-crystal ones [145, 229].

  24. 24.

    Erwin Schrödinger (1887–1961) won the 1933 Nobel Prize in Physics along with Paul A.M. Dirac for formulating the wave equation that now bears his name [400].

  25. 25.

    George Green (1793–1841) made important contributions to mathematical physics in an essay on electricity and magnetism in 1828; these include the relationship between properties inside a volume and those on its surface (Green’s theorem) and a potential function that can be used to impose boundary conditions (Green’s function) [67, 185].

  26. 26.

    The atomic form factor can be made complex through the addition of a imaginary component when one wants to phenomenologically include inelastic or diffuse scattering in this derivation.

  27. 27.

    Under the ergodic hypothesis, given a stationary random process, the time average of an observable is the same as its ensemble average [360].

  28. 28.

    Named after Ludwig E. Boltzmann (1844–1906) for his use of this statistical method to derive the thermodynamics of a system from the properties of its microscopic constituents [360].

  29. 29.

    In the case of strong lattice vibrations and correlated motions, the following expression leads to thermal diffuse scattering wherein scattered intensity is observed as lines between diffraction spots, along .

  30. 30.

    Ivar Waller (1898–1991) followed up on discussion by Peter Debye (see footnote 23) on the effect of lattice vibrations on X-ray crystallography and gave it a complete mathematical formulation in 1923 [335].

  31. 31.

    This parameter is often referred among protein crystallographers by the ‘B-factor’: .

  32. 32.

    Neutrons have a non-zero magnetic moment and can also be scattered by unpaired electrons [498].

  33. 33.

    For X-rays, the scattering potential depends on the electron number density ; in the case of neutrons, it is Fermi pseudopotential , where m n is the neutron mass and b is the bound coherent neutron scattering length [446].

  34. 34.

    This criterion specifies the minimum resolvable separation between two point sources, first proposed by John William Strutt, the 3rd Baron Rayleigh (1842–1919) [400].

  35. 35.

    Louis de Broglie (1892–1987), won the 1929 Nobel Prize in Physics for introducing the idea of matter waves in 1924 [400].

  36. 36.

    Nevill F. Mott (1905–1996) and Hans A. Bethe (1906–2005) first discovered this relation between the electron and X-ray scattering factors in 1930 [336, 337]. For reference, the derivation is summarized in Appendix E.

  37. 37.

    Assuming molar absorption coefficient 𝜖 abs ∼ 105 M−1 cm−1 and absorber molar concentration c abs ∼ 2.0 M.

  38. 38.

    As reviewed in Refs. [21, 75, 94, 139, 140, 201, 457, 573], there are tabletop femtosecond X-ray sources which are based on laser-driven plasma generation; however, their brightnesses are 104–109 less than the XFEL ones [140], requiring much higher peak pump-laser intensities to achieve good SNR [167, 575, 576].

  39. 39.

    THG is a nonlinear optical process that triples the frequency of an input laser beam. Here, it is achieved by first frequency-doubling the 800-nm input beam through SHG in a BBO crystal, temporally overlapping the 400-nm and remaining 800-nm light using a birefringent calcite crystal, and then combining them into 267-nm photons in another BBO crystal through sum frequency generation (SFG).

  40. 40.

    The photocathode in this setup is a 1-mm thick sapphire substrate with 20 nm of vapour-deposited gold, which has a work function of ca. 3.8–4.3 eV [3, 524]. considering the photon energy of the UV pulse, electrons would be emitted with excess kinetic energy that translates to significant momentum spread.

  41. 41.

    The pinhole blocks electrons that were generated with high transverse momentum; its diameter can be increased to exchange better transverse beam coherence for higher beam brightness, or vice versa.

  42. 42.

    The electrons are high energy but not relativistic; their Lorentz factor γ = 1 + UE 0 is less than 2.0 and their relativistic beta \(\beta = v/c = \sqrt {1 - 1/\gamma ^2}\) is only 0.54.

  43. 43.

    The local transverse coherence width \(L_T^{loc}\) is defined here as \(\hbar /\sigma _{p_x}^{\mathrm{loc}}\), where \(\sigma _{p_x}^{\mathrm{loc}}\) is the width of the electron momentum distribution in the transverse direction of the beam [365].

  44. 44.

    The camera parameter is the conversion factor for the position of diffraction features, between the camera frame (in pixels) and reciprocal space (in Å−1). Although determined empirically here, it can be calculated as 4πl∕(λL), where l is the camera pixel size (13.5 μm/px), λ is the electron de Broglie wavelength (0.038 Å), and L is the sample-camera distance (ca. 35 cm).

  45. 45.

    Pyotr L. Kapitsa (1894–1984) and Paul A.M. Dirac (1902–1984) developed the theory of electrons reflected by standing light waves in 1933 [278]. They were both awarded independently a Nobel Prize in Physics: Kapitsa in 1978 for his work in low-temperature physics (along with Arno A. Penzias and Robert W. Wilson for their discovery of the cosmic microwave background radiation) [336] and Dirac in 1933 (jointly with Erwin Schrödinger) for a fully relativistic quantum theory [400].

  46. 46.

    Considering the camera pixel size and sample-camera distance (see footnote 44), this translates to a deflection velocity of ca. 2.8 mrad/ps.

  47. 47.

    The images can be as large as the CCD sensor of the camera (2048 × 2048 pixels) and they are stored as an uncompressed TIFF (‘tagged image file format’) 6.0 file; the pixel values are unsigned 16-bit integers.

  48. 48.

    ‘Big data’ herein refers to datasets that are too large to fit entirely in the random-access memory of a typical personal computer (ca. 8 GB).

  49. 49.

    A program authored by Dr. Meng Gao actively monitors the pointing of the laser by imaging a beam spot using a high-speed camera (PointGrey Firefly); it then compensates for any significant deviation in spot position by controlling a pair of in-beam mirrors mounted on piezoelectric actuators [171].

  50. 50.

    First proposed in 1949 by Norbert Wiener (1894–1964), this image processing technique estimates the local mean and variance around each pixel and then applies more or less smoothing in response [326].

  51. 51.

    This computational technique was developed by John F. Canny (1958–present) in 1986; it detect edges by searching for connected pixels whose gradient magnitude is between two given thresholds [70].

  52. 52.

    Named after Georges Friedel (1865–1933), these pairs are the diffraction spots with Miller index (h, k, l) and \((\bar {h}, \bar {k}, \bar {l} )\) [16].

  53. 53.

    This is performed using the regionprops function in MATLAB R2017b.

  54. 54.

    For the molecule (EDO-TTF)2PF6, there are N = 35 non-hydrogen atoms in the asymmetric unit, hence 3N − 6 = 99 DOFs.

  55. 55.

    For reference, \( \left ( H(t - t_0) \text{e}^{-k t}\right ) \ast \text{e}^{- \frac {1}{2} t^2/\tau ^2} = \frac {1}{2} \text{e}^{\frac {1}{2} k^2 \tau ^2 - k (t - t_0)} \left ( 1 + \text{erf}\left ( \frac {t - t_0 - k \tau ^2}{\sqrt {2} \tau } \right ) \right )\).

  56. 56.

    Named after English mathematician Karl Pearson (1857–1936) [342].

  57. 57.

    On the order of the coherence length of the probe electrons.

  58. 58.

    This is true for all UED samples studied in this thesis, with the exception of [FeII(bpy)3](PF6)2 whose photoproduct state cannot be reached thermally.

  59. 59.

    Norwegian physicist Lars Vegard (1880–1963) observed a linear relation between the lattice parameters of ionic salt alloys and the concentration of each components using XRD [125, 543].

  60. 60.

    The letters u, v, w are used most often to refer to crystal orientations; however, numbered subscripts are used instead here for convenient indexing.

  61. 61.

    French mathematician Benjamin Olinde Rodrigues (1795–1851) discovered in 1840 this convenient formula to rotate a vector in three dimensional space given an axis and an angle of rotation [386].

References

  1. M. Aidesburger, F.O. Kirchner, F. Krausz, P. Baum, Single-electron pulses for ultrafast diffraction. Proc. Natl. Acad. Sci. USA 107, 19714–19719 (2010)

    ADS  Google Scholar 

  2. R.R. Alfano, S.L. Shapiro, Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)

    ADS  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  4. A. Authier, Early Days of X-ray Crystallography (Oxford University Press, Oxford, 2013)

    Google Scholar 

  5. P. Ball, Europe’s X-ray laser fires up. Nature 548, 507–508 (2017)

    ADS  Google Scholar 

  6. T.R.M. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R.B. Doak, K. Falahati, E. Hartmann, M. Hilpert, M. Heinz, M.C. Hoffmann, J. Köfinger, J.E. Koglin, G. Kovacsova, M. Liang, D. Milathianaki, H.T. Lemke, J. Reinstein, C.M. Roome, R.L. Shoeman, G.J. Williams, I. Burghardt, G. Hummer, S. Boutet, I. Schlichting, Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015)

    ADS  Google Scholar 

  7. M. Bargheer, N. Zhavoronkov, M. Woerner, T. Elsaesser, Recent progress in ultrafast X-ray diffraction. ChemPhysChem. 7, 783–792 (2006)

    Google Scholar 

  8. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic, Burlington, 2008)

    Google Scholar 

  9. N. Bréfuel, H. Watanabe, L. Toupet, J. Come, N. Matsumoto, E. Collet, K. Tanaka, J.-P. Tuchagues, Concerted spin crossover and symmetry breaking yield three thermally and one light-induced crystallographic phases of a molecular material. Angew. Chem. Int. Ed. 48, 9304–9307 (2009)

    Google Scholar 

  10. D.M. Cannell, George Green: an enigmatic mathematician. Am. Math. Mon. 106, 136–151 (1999)

    MathSciNet  MATH  Google Scholar 

  11. J. Canny, A Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Google Scholar 

  12. F. Carbone, P. Musumeci, O.J. Luiten, C. Hebert, A perspective on novel sources of ultrashort electron and X-ray pulses. Chem. Phys. 392, 1–9 (2012)

    Google Scholar 

  13. E. Cartlidge, European XFEL to shine as brightest, fastest X-ray source. Science 354, 22–23 (2016)

    ADS  Google Scholar 

  14. H.N. Chapman, S.P. Hau-Riege, M.J. Bogan, S. Bajt, A. Barty, S. Boutet, S. Marchesini, M. Frank, B.W. Woods, W.H. Benner, R.A. London, U. Rohner, A. Szöke, E. Spiller, T. Möller, C. Bostedt, D.A. Shapiro, M. Kuhlmann, R. Treusch, E. Plönjes, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M.M. Seibert, J. Hajdu, Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007)

    ADS  Google Scholar 

  15. H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, M.S. Hunter, J. Schulz, D.P. DePonte, U. Weierstall, R.B. Doak, F.R.N.C. Maia, A.V. Martin, I. Schlichting, L. Lomb, N. Coppola, R.L. Shoeman, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M.J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, M. Messerschmidt, J.D. Bozek, S.P. Hau-Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Hajdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schröter, F. Krasniqi, M. Bott, K.E. Schmidt, X. Wang, I. Grotjohann, J.M. Holton, T.R.M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, J.C.H. Spence, Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011)

    Google Scholar 

  16. M. Chergui, A.H. Zewail, Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10, 28–43 (2009)

    Google Scholar 

  17. M.T.B. Clabbers, J.P. Abrahams, Electron crystallography and three-dimensional crystallography for structural biology. Crystallogr. Rev. 24, 176–204 (2018)

    Google Scholar 

  18. E. Condon, A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201 (1926)

    MATH  ADS  Google Scholar 

  19. P. Coppens, Synchrotron Radiation Crystallography (Academic, London, 1992)

    Google Scholar 

  20. P. Coppens, D.V. Fomitchev, M.D. Carducci, K. Culp, Crystallography of molecular excited states. Transition-metal nitrosyl complexes and the study of transient species. J. Chem. Soc. Dalton Trans. 6, 865–872 (1998)

    Google Scholar 

  21. J.M. Cowley, Diffraction Physics, 3rd edn. (North Holland, New York, 1995)

    Google Scholar 

  22. J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957)

    MathSciNet  Google Scholar 

  23. J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. II. The effects of finite source size. Acta Crystallogr. 12, 609–619 (1959)

    Google Scholar 

  24. J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns. Acta Crystallogr. 12, 360–367 (1959)

    Google Scholar 

  25. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991)

    ADS  Google Scholar 

  26. K.H. Downing, H. Li, Accurate recording and measurement of electron diffraction data in structural and difference Fourier studies of proteins. Microsc. Microanal. 7, 407–417 (2001)

    ADS  Google Scholar 

  27. M.A. Dugan, J.X. Tull, W.S. Warren, High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B 14, 2348–2358 (1997)

    ADS  Google Scholar 

  28. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, R.J.D. Miller, Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010)

    ADS  Google Scholar 

  29. T. Elsaesser, M. Woerner, Photoinduced structural dynamics of polar solids studied by femtosecond X-ray diffraction. Acta Cryst. A 66, 168–178 (2010)

    Google Scholar 

  30. T. Elsaesser, M. Woerner, Perspective: structural dynamics in condensed matter mapped by femtosecond X-ray diffraction. J. Chem. Phys. 140, 020901 (2014)

    ADS  Google Scholar 

  31. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, J. Galayda, First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010)

    Google Scholar 

  32. P.P. Ewald (ed.), Fifty Years of X-ray Diffraction (Springer, New York, 1962)

    Google Scholar 

  33. R.L. Field, Photoinduced spin crossover in single crystal [FeII(bpy)3](PF6)2, PhD thesis, University of Toronto, 2016

    Google Scholar 

  34. J. Franck, E.G. Dymond, Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926)

    Google Scholar 

  35. D.L. Freimund, K. Affatooni, H. Batelaan, Observation of the Kapitza-Dirac effect. Nature 413, 142–143 (2001)

    ADS  Google Scholar 

  36. B. Freyer, F. Zamponi, V. Juvé, J. Stingl, M. Woerner, T. Elsaesser, M. Chergui, Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138, 144504 (2013)

    ADS  Google Scholar 

  37. M. Gao, Mapping organic molecular motions with RF compressed femtosecond electron diffraction. PhD thesis, University of Toronto, 2014

    Google Scholar 

  38. M. Gao, H. Jean-Ruel, R.R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, R.J.D. Miller, Full Characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Opt. Express 20, 12048–12058 (2012)

    ADS  Google Scholar 

  39. M. Gao, C. Lu, H. Jean-Ruel, L. Liu, A. Marx, K. Onda, S.-Y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R.R. Cooney, G. Moriena, G. Sciaini, R.J.D. Miller, Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013)

    ADS  Google Scholar 

  40. M. Gao, Y. Jiang, G.H. Kassier, R.J.D. Miller, Single shot time stamping of ultrabright radio frequency compressed electron pulses. Appl. Phys. Lett. 103, 033503 (2013)

    ADS  Google Scholar 

  41. R.K. Gehrenbeck, Electron diffraction: fifty years ago. Phys. Today 31, 34–41 (1978)

    ADS  Google Scholar 

  42. C. Giacovazzo, H. Monaco, G. Artioli, D. Viterbo, M. Milanesio, G. Gilli, P. Gilli, G. Zanotti, G. Ferraris, M. Catti, Fundamentals of Crystallography, ed. by C. Giacovazzo (Oxford University Press, New York, 2011)

    Google Scholar 

  43. I. Grattan-Guinness, Why did George Green write his essay of 1828 on electricity and magnetism? Am. Math. Mon. 102, 387–396 (1995)

    MathSciNet  MATH  Google Scholar 

  44. N. Grigorieff, R. Henderson, Diffuse scattering in electron diffraction data from protein crystals. Ultramicroscopy 60, 295–309 (1995)

    Google Scholar 

  45. M. Hada, K. Pichugin, G. Sciaini, Ultrafast structural dynamics with table top femtosecond hard X-ray and electron diffraction setups. Eur. Phys. J. Spec. Top. 222, 1093–1123 (2013)

    Google Scholar 

  46. M. Harb, Investigating photoinduced structural changes in Si using femtosecond electron diffraction. PhD thesis, University of Toronto, 2009

    Google Scholar 

  47. C.T. Hebeisen, R. Ernstorfer, M. Harb, T. Dartigalongue, R.E. Jordan, R.J.D. Miller, Femtosecond electron pulse characterization using laser ponderomotive scattering. Opt. Lett. 31, 3517–3519 (2006)

    ADS  Google Scholar 

  48. R. Henderson, Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc. R. Soc. Lond. B 241, 6–8 (1990)

    ADS  Google Scholar 

  49. R. Henderson, Excitement over X-ray lasers is excessive. Nature 415, 833 (2002)

    ADS  Google Scholar 

  50. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer’ equation. Nat. Nanotech. 6, 534 (2011)

    ADS  Google Scholar 

  51. International Standard, Thermal insulation – Heat transfer by radiation – Physical quantities and definitions. International Organization for Standardization, Geneva, CH, Tech. Rep. (1989)

    Google Scholar 

  52. International Union of Crystallography, Report of the Executive Committee for 1991. Acta Cryst. A 48, 922–946 (1992)

    Google Scholar 

  53. M.N. Islam, L.F. Mollenauer, R.H. Stolen, J.R. Simpson, H.T. Shang, Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627 (1987)

    ADS  Google Scholar 

  54. Evolution-15/30 Laser Operator’s Manual (Coherent, Inc., Santa Clara, 2006)

    Google Scholar 

  55. Micra-5 Laser Operator’s Manual (Coherent, Inc., Santa Clara, 2009)

    Google Scholar 

  56. Legend Elite Operator’s Manual (Coherent, Inc., Santa Clara, 2010)

    Google Scholar 

  57. H.H. Jaffé, A.L. Miller, The fates of electronic excitation energy. J. Chem. Educ. 43, 469–473 (1966)

    Google Scholar 

  58. Y. Jiang, Femtosecond electron diffraction studies of photoinduced spin crossover in single crystal [Fe(PM-AzA)2](NCS)2. PhD thesis, Universität Hamburg, 2016

    Google Scholar 

  59. P.L. Kapitza, P.A.M. Dirac, The reflection of electrons from standing light waves. Math. Proc. Camb. Philos. Soc. 29, 297–300 (1933)

    MATH  ADS  Google Scholar 

  60. M. Kasha, Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Google Scholar 

  61. G.H. Kassier, K. Haupt, N. Erasmus, E.G. Rohwer, H.M. von Bergmann, H. Schwoerer, S.M.M. Coelho, F.D. Auret, A compact streak camera for 150 fs time resolved measurement of bright pulses in ultrafast electron diffraction. Rev. Sci. Inst. 81, 105103 (2010)

    ADS  Google Scholar 

  62. F.O. Kirchner, S. Lahme, F. Krausz, P. Baum, Coherence of femtosecond single electrons exceeds biomolecular dimensions. New J. Phys. 15, 063021 (2013)

    ADS  Google Scholar 

  63. E.J. Kirkland, Advanced Computing in Electron Microscopy, 2nd edn. (Springer, New York, 2010)

    Google Scholar 

  64. F.B. Kiwiet, A.H. Kemper, O.J. Luiten, G.J.H. Brussaard, M.J. van der Wiel, Femtosecond synchronization of a 3 GHz RF oscillator to a mode-locked Ti:Sapphire laser. Nucl. Instrum. Methods Phys. Res. A 484, 619–624 (2002)

    ADS  Google Scholar 

  65. I. Ko, H.-S. Kang, H. Heo, C. Kim, G. Kim, C.-K. Min, H. Yang, S. Baek, H.-J. Choi, G. Mun, B. Park, Y. Suh, D. Shin, J. Hu, J. Hong, S. Jung, S.-H. Kim, K. Kim, D. Na, S.S. Park, Y. Park, Y. Jung, S. Jeong, H. Lee, S. Lee, S. Lee, B. Oh, H. Suh, J.-H. Han, M. Kim, N.-S. Jung, Y.-C. Kim, M.-S. Lee, B.-H. Lee, C.-W. Sung, I.-S. Mok, J.-M. Yang, Y. Parc, W.-W. Lee, C.-S. Lee, H. Shin, J. Kim, Y. Kim, J. Lee, S.-Y. Park, J. Kim, J. Park, I. Eom, S. Rah, S. Kim, K. Nam, J. Park, J. Park, S. Kim, S. Kwon, R. An, S.H. Park, K. Kim, H. Hyun, S. Kim, S. Kim, C.-J. Yu, B.-S. Kim, T.-H. Kang, K.-W. Kim, S.-H. Kim, H.-S. Lee, H.-S. Lee, K.-H. Park, T.-Y. Koo, D.-E. Kim, K. Lee, Construction and commissioning of PAL-XFEL facility. Appl. Sci. 7, 479 (2017)

    Google Scholar 

  66. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewoods Cliffs, 1990)

    Google Scholar 

  67. S. Lundqvist, A. Magnéli, Crystallographers. J. Appl. Cryst. 25, 463 (1992)

    Google Scholar 

  68. S. Lundqvist (ed.), Nobel Lectures: Physics 1971–1980 (World Scientific, Singapore, 1992)

    Google Scholar 

  69. S. Lundqvist (ed.), Nobel Lectures: Physics 1963–1970 (World Scientific, Singapore, 1998)

    Google Scholar 

  70. M.E. Magnello, Pearson, Karl: his life and contribution to statistics, in Wiley StatsRef: Statistics Reference Online (Wiley, New York, 2014)

    Google Scholar 

  71. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000)

    MATH  Google Scholar 

  72. U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer, E. Riedle, Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215– 231 (2009)

    ADS  Google Scholar 

  73. A.M. Michalik, Theory of ultrafast electron diffraction. PhD thesis, University of Toronto, 2009

    Google Scholar 

  74. C.J. Milne, T. Schietinger, M. Aiba, A. Alarcon, J. Alex, A. Anghel, V. Arsov, C. Beard, P. Beaud, S. Bettoni, M. Bopp, H. Brands, M. Brönnimann, I. Brunnenkant, M. Calvi, A. Citterio, P. Craievich, M.C. Divall, M. Dällenbach, M. D’Amico, A. Dax, Y. Deng, A. Dietrich, R. Dinapoli, E. Divall, S. Dordevic, S. Ebner, C. Erny, H. Fitze, U. Flechsig, R. Follath, F. Frei, F. Gärtner, R. Ganter, T. Garvey, Z. Geng, I. Gorgisyan, C. Gough, A. Hauff, C. P. Hauri, N. Hiller, T. Humar, S. Hunziker, G. Ingold, R. Ischebeck, M. Janousch, P. Juranić, M. Jurcevic, M. Kaiser, B. Kalantari, R. Kalt, B. Keil, C. Kittel, G. Knopp, W. Koprek, H.T. Lemke, T. Lippuner, D.L. Sancho, F. Löhl, C. Lopez-Cuenca, F. Märki, F. Marcellini, G. Marinkovic, I. Martiel, R. Menzel, A. Mozzanica, K. Nass, G.L. Orlandi, C. Ozkan Loch, E. Panepucci, M. Paraliev, B. Patterson, B. Pedrini, M. Pedrozzi, P. Pollet, C. Pradervand, E. Prat, P. Radi, J.-Y. Raguin, S. Redford, J. Rehanek, J. Réhault, S. Reiche, M. Ringele, J. Rittmann, L. Rivkin, A. Romann, M. Ruat, C. Ruder, L. Sala, L. Schebacher, T. Schilcher, V. Schlott, T. Schmidt, B. Schmitt, X. Shi, M. Stadler, L. Stingelin, W. Sturzenegger, J. Szlachetko, D. Thattil, D.M. Treyer, A. Trisorio, W. Tron, S. Vetter, C. Vicario, D. Voulot, M. Wang, T. Zamofing, C. Zellweger, R. Zennaro, E. Zimoch, R. Abela, L. Patthey, H.-H. Braun, SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017)

    Google Scholar 

  75. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  76. J.F. Nagle, Solving complex photocycle kinetics. Theory and direct method. Biophys. J. 59, 476–487 (1991)

    Google Scholar 

  77. C. Nagura, A. Suda, H. Kawana, M. Obara, K. Midorikawa, Generation and characterization of ultrafast white-light continuum in condensed media. Appl. Opt. 41, 3735–3742 (2002)

    ADS  Google Scholar 

  78. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hadju, Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    ADS  Google Scholar 

  79. Nobelstiftelsen, Nobel Lectures: Chemistry 1901–1921 (Elsevier, Amsterdam, 1966)

    Google Scholar 

  80. K. Pande, C.D.M. Hutchison, G. Groenhof, A. Aquila, J.S. Robinson, J. Tenboer, S. Basu, S. Boutet, D.P. DePonte, M. Liang, T.A. White, N.A. Zatsepin, O. Yefanov, D. Morozov, D. Oberthuer, C. Gati, G. Subramanian, D. James, Y. Zhao, J. Koralek, J. Brayshaw, C. Kupitz, C. Conrad, S. Roy-Chowdhury, J.D. Coe, M. Metz, P.L. Xavier, T.D. Grant, J.E. Koglin, G. Ketawala, R. Fromme, V. Šrajer, R. Henning, J.C.H. Spence, A. Ourmazd, P. Schwander, U. Weierstall, M. Frank, P. Fromme, A. Barty, H.N. Chapman, K. Moffat, J.J. van Thor, M. Schmidt, Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016)

    Google Scholar 

  81. L.-M. Peng, G. Ren, S.L. Dudarev, M.J. Whelan, Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallogr. 52, 257–276 (1996)

    Google Scholar 

  82. L.-M. Peng, G. Ren, S.L. Dudarev, M.J. Whelan, Debye-Waller factors and absorptive scattering factors of elemental crystals. Acta Crystallogr. 52, 456–470 (1996)

    Google Scholar 

  83. E. Prince (ed.), International Tables for Crystallography, vol. C (Springer, Berlin, 2006)

    Google Scholar 

  84. L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation. Springer Series in Optical Sciences, 5th edn. (Springer, New York, 2008)

    Google Scholar 

  85. A. Rousse, C. Rischel, J.-C. Gauthier, Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 17 (2001)

    ADS  Google Scholar 

  86. C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, R. Tauler, Comprehensive data analysis of femtosecond transient absorption spectra: a review. J. Photoch. Photobio. C 13, 1–27 (2012)

    Google Scholar 

  87. J. Rumble (ed.), CRC Handbook of Chemistry and Physics, 98th edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

  88. M.M. Seibert, T. Ekeberg, F.R.N.C. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D.P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T.A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J.-M. Claverie, C. Bostedt, J.D. Bozek, S. Boutet, A.A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K.O. Hodgson, M.J. Bogan, C.Y. Hampton, R.G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J.C.H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R.B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R.L. Shoeman, L. Lomb, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Höomke, C. Reich, D. Pietschner, G. Weidenspointner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, R. Andritschke, C.-D. Schröter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H.N. Chapman, J. Hajdu, Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470, 78–81 (2011)

    Google Scholar 

  89. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)

    ADS  Google Scholar 

  90. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J. Appl. Phys. 92, 1643–1648 (2002)

    ADS  Google Scholar 

  91. B.J. Siwick, A.A. Green, C.T. Hebeisen, R.J.D. Miller, Characterization of ultrashort electron pulses by electron-laser pulse cross correlation. Opt. Lett. 30, 1057–1059 (2005)

    ADS  Google Scholar 

  92. P. Soille, Morphological Image Analysis: Principles and Applications (Springer, New York, 2004)

    MATH  Google Scholar 

  93. J.C.H. Spence, Outrunning damage: electrons vs X-rays — timescales and mechanisms. Struct. Dyn. 4, 044027 (2017)

    Google Scholar 

  94. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 3rd edn. (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  95. K. Stenn, G.R. Bahr, Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J. Ultrastruct. Res. 31, 526–550 (1970)

    Google Scholar 

  96. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)

    ADS  Google Scholar 

  97. G. Taylor, The phase problem. Acta Cryst. D 59, 1881–1890 (2003)

    Google Scholar 

  98. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G.J. Williams, J.E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J.J.V. Thor, J.C.H. Spence, P. Fromme, H.N. Chapman, M. Schmidt, Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014)

    Google Scholar 

  99. J.S. Townsend, A Modern Approach to Quantum Mechanics (University Science Books, Sausalito, 2000)

    Google Scholar 

  100. R. Trebino (ed.), Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer US, New York, 2000)

    Google Scholar 

  101. T. Tsang, T. Srinivasan-Rao, J. Fischer, Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys. Rev. B 43, 8870–8878 (1991)

    ADS  Google Scholar 

  102. S.J. van Reeuwijk, A. Puig-Molina, H. Graafsma, Electric-field-induced structural changes in deuterated potassium dihydrogen phosphate. Phys. Rev. B 62, 6192–6197 (2000)

    ADS  Google Scholar 

  103. I.H.M. van Stokkum, D.S. Larsen, R. van Grondelle, Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 1657, 82–104 (2004)

    Google Scholar 

  104. L.J.G.W. van Wilderen, C.N. Lincoln, J.J. van Thor, Modelling multi-pulse population dynamics from ultrafast spectroscopy. PLoS One 6, e17373 (2011)

    ADS  Google Scholar 

  105. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)

    ADS  Google Scholar 

  106. I.I. Vorontsov, P. Coppens, On the refinement of time-resolved diffraction data: comparison of the random-distribution and cluster-formation models and analysis of the light-induced increase in the atomic displacement parameters. J. Synchrotron Radiat. 12, 488–493 (2005)

    Google Scholar 

  107. X. Wang, S. Nie, H. Park, J. Li, R. Clinite, R. Li, X. Wang, J. Cao, Measurement of femtosecond electron pulse length and the temporal broadening due to space charge. Rev. Sci. Instrum. 80, 013902 (2009)

    ADS  Google Scholar 

  108. B.E. Warren, X-ray Diffraction (Dover Publications, Mineola, 1990)

    Google Scholar 

  109. P.D. Welch, The use of fast Fourier transform for the estimate of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)

    ADS  Google Scholar 

  110. M. Yabashi, H. Tanaka, T. Ishikawa, Overview of the SACLA facility. J. Synchrotron Radiat. 22, 477–484 (2015)

    Google Scholar 

  111. L. Young, K. Ueda, M. Gühr, P.H. Bucksbaum, M. Simon, S. Mukamel, N. Rohringer, K.C. Prince, C. Masciovecchio, M. Meyer, A. Rudenko, D. Rolles, C. Bostedt, M. Fuchs, D.A. Reis, R. Santra, H. Kapteyn, M. Murnane, H. Ibrahim, F. Légare, M. Vrakking, M. Isinger, D. Kroon, M. Gisselbrecht, A. L’Huillier, H. Wörner, S.R. Leone, Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B 51, 032003 (2018)

    ADS  Google Scholar 

  112. F. Zamponi, Z. Ansari, M. Woerner, T. Elsaesser, Femtosecond powder diffraction with a laser-driven hard X-ray source. Opt. Express 18, 947–961 (2010)

    ADS  Google Scholar 

  113. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, T. Elsaesser, Ultrafast large-amplitude relocation of electronic charge in ionic crystals. Proc. Natl. Acad. Sci. USA 109, 5207–5217 (2012)

    ADS  Google Scholar 

  114. Z.Y. Zhu, Z.T. Zhao, D. Wang, Z. Liu, R.X. Li, L.X. Yin, Z.H. Yang, SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai, ed. by K. Bishofberger, 2017, pp. 182–184

    Google Scholar 

  115. X. Zou, S. Hovmöller, P. Oleynikov, Electron Crystallography (Oxford University Press, Oxford, 2011)

    Google Scholar 

  116. C. Zulick, F. Dollar, V. Chvykov, J. Davis, G. Kalinchencko, A. Maksimchuk, G.M. Petrov, A. Raymond, A.G.R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, Energetic neutrons beams generated from femtosecond laser plasma interactions. Appl. Phys. Lett. 102, 124101 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Methods: Experimental Techniques and Data Science. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_2

Download citation

Publish with us

Policies and ethics