Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 317 Accesses

Abstract

In 1962 and 1964, the Nobel Prizes in Chemistry (Tiselius, Nobel lectures: chemistry 1942–1962, Elsevier, Amsterdam, 1964; Natta, Nobel lectures: chemistry 1963–1970, Amsterdam, Elsevier, 1972) were awarded to crystallographers John C. Kendrew (1917–1997), Max F. Perutz (1914–2002), and Dorothy C. Hodgkin (1910–1994) for their work in determining for the first time the 3D structure of several important macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kendrew and Perutz solved by X-ray diffraction (XRD) the structure of myoglobin [284] and haemoglobin [441] respectively while Hodgkin did so for cholesterol [77], penicillin [117], vitamin B12 [117], and insulin [117].

  2. 2.

    A more detailed account on the relevant fields beyond UED can be found in the books Pathways to Modern Chemical Physics [62] and Early Days of X-ray Crystallography [16].

  3. 3.

    See Refs. [167, 275, 500, 561, 575, 577].

  4. 4.

    See Appendix C for their crystallographic information.

References

  1. A. Authier, Early Days of X-ray Crystallography (Oxford University Press, Oxford, 2013)

    Google Scholar 

  2. P. Baum, D.-S. Yang, A.H. Zewail, 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788–792 (2007)

    ADS  Google Scholar 

  3. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Google Scholar 

  4. S. Califano, Pathways to Modern Chemical Physics (Springer, Berlin, 2012)

    Google Scholar 

  5. F. Carbone, P. Musumeci, O.J. Luiten, C. Hebert, A perspective on novel sources of ultrashort electron and X-ray pulses. Chem. Phys. 392, 1–9 (2012)

    Google Scholar 

  6. C.H. Carlisle, D. Crowfoot, The crystal structure of cholesteryl iodide. Proc. R. Soc. Lond. A 184, 64–83 (1945)

    ADS  Google Scholar 

  7. M. Centurion, Ultrafast imaging of isolated molecules with electron diffraction. J. Phys. B 49, 062002 (2016)

    ADS  Google Scholar 

  8. M. Chergui, J.M. Thomas, From structure to structural dynamics: Ahmed Zewail’s legacy. Struct. Dyn. 4, 043802 (2017)

    Google Scholar 

  9. M. Chergui, A.H. Zewail, Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10, 28–43 (2009)

    Google Scholar 

  10. D. Crowfoot, C.W. Bunn, B.W. Rogers-Low, A. Turner-Jones, X-ray crystallographic investigation of the structure of penicillin, in Chemistry of Penicillin, ed. by H.T. Clarke, J.R. Johnson, R. Robinson (Princeton University Press, Princeton, 1949), pp. 310–367

    Google Scholar 

  11. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, R.J.D. Miller, Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010)

    ADS  Google Scholar 

  12. R. Ernstorfer, M. Harb, C.T. Hebeisen, G. Sciaini, R.J.D. Miller, The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009)

    ADS  Google Scholar 

  13. R.L. Field, L. Liu, W. Gawelda, C. Lu, R.J.D. Miller, Spectral signatures of ultrafast spin crossover in single crystal [FeII(bpy)3](PF6)2. Chem. Eur. J. 22, 5118–5122 (2016)

    Google Scholar 

  14. B. Freyer, F. Zamponi, V. Juvé, J. Stingl, M. Woerner, T. Elsaesser, M. Chergui, Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138, 144504 (2013)

    ADS  Google Scholar 

  15. M. Gao, H. Jean-Ruel, R.R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, R.J.D. Miller, Full Characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Opt. Express 20, 12048–12058 (2012)

    ADS  Google Scholar 

  16. M. Gao, C. Lu, H. Jean-Ruel, L. Liu, A. Marx, K. Onda, S.-Y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R.R. Cooney, G. Moriena, G. Sciaini, R.J.D. Miller, Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013)

    ADS  Google Scholar 

  17. R.M. Glaeser, Electron crystallography: present excitement, a nod to the past, anticipating the future. J. Struct. Bio. 128, 3–14 (1999)

    Google Scholar 

  18. H. Gutfreund, J.R. Knowles, The foundation of enzyme action. Essays Biochem. 3, 25–72 (1967)

    Google Scholar 

  19. M. Hada, K. Pichugin, G. Sciaini, Ultrafast structural dynamics with table top femtosecond hard X-ray and electron diffraction setups. Eur. Phys. J. Spec. Top. 222, 1093–1123 (2013)

    Google Scholar 

  20. H. Ihee, V.A. Lobastov, U.M. Gomez, B.M. Goodson, R. Srinivasan, C.-Y. Ruan, A.H. Zewail, Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001)

    ADS  Google Scholar 

  21. A.A. Ischenko, P.M. Weber, R.J.D. Miller, Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017)

    Google Scholar 

  22. H. Jean-Ruel, Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction. PhD thesis, University of Toronto, 2014

    Google Scholar 

  23. H. Jean-Ruel, R.R. Cooney, M. Gao, C. Lu, M.A. Kochman, C.A. Morrison, R.J.D. Miller, Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals. J. Phys. Chem. A 115, 13158–13168 (2011)

    Google Scholar 

  24. H. Jean-Ruel, M. Gao, M.A. Kochman, C. Lu, L. Liu, R.R. Cooney, C.A. Morrison, R.J.D. Miller, Ring-closing reaction in diarylethene captured by femtosecond electron crystallography. J. Phys. Chem. B 117, 15894–15902 (2013)

    Google Scholar 

  25. Y. Jiang, L. Liu, H.M. Müller-Werkmeister, C. Lu, D. Zhang, R.L. Field, A. Sarracini, G. Moriena, E. Collet, R.J.D. Miller, Structural dynamics upon photoexcitation in a spin crossover crystal probed with femtosecond electron diffraction. Angew. Chem. Int. Ed. 56, 7130–7134 (2017)

    Google Scholar 

  26. Y. Jiang, L. Liu, K.M. Krawczyk, A. Sarracini, J.S. Wentzell, C. Lu, R.L. Field, S.F. Matar, W. Gawelda, H.M. Müller-Werkmeister, R.J.D. Miller, Direct observation of nuclear reorganization driven by ultrafast spin transitions. Nat. Commun. 11, 1530–1537 (2020)

    ADS  Google Scholar 

  27. V. Juvé, M. Holt, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction. Phys. Rev. Lett. 111, 217401 (2013)

    ADS  Google Scholar 

  28. J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, R. Davies, D.C. Philips, V.C. Shore, Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 181, 442–427 (1960)

    Google Scholar 

  29. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    ADS  Google Scholar 

  30. L. Liu, Y. Jiang, H.M. Müller-Werkmeister, C. Lu, G. Moriena, M. Ishikawa, Y. Nakano, H. Yamochi, R.J.D. Miller, Ultrafast electron diffraction study of single-crystal (EDO-TTF)2SbF6: counterion effect and dimensionality reduction. Chem. Phys. Lett. 683, 160–165 (2017)

    ADS  Google Scholar 

  31. E. Muybridge, The Horse in Motion. Retrieved from the Library of Congress, 1878 [Online]. Available https://lccn.loc.gov/2007678037

  32. G. Natta, Nobel Lectures: Chemistry 1963–1970 (Elsevier, Amsterdam, 1972)

    Google Scholar 

  33. D.C. Pease, K.R. Porter, Electron microscopy and ultramicrotomy. J. Cell Bio. 91, 278s–292s (1981)

    Google Scholar 

  34. M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G. Will, A.C.T. North, Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960)

    Google Scholar 

  35. G. Sciaini, M. Harb, S.G. Kruglik, T. Payer, C.T. Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M. Horn-von Hoegen, R. Ernstorfer, R.J.D. Miller, Electronic acceleration of atomic motions and disordering in bismuth. Nature 458, 56–59 (2009)

    Google Scholar 

  36. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)

    ADS  Google Scholar 

  37. J.C.H. Spence, Outrunning damage: electrons vs X-rays — timescales and mechanisms. Struct. Dyn. 4, 044027 (2017)

    Google Scholar 

  38. J. Stingl, F.Z.B. Freyer, M. Woerner, T. Elsaesser, A. Borgschulte, Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond X-ray diffraction. Phys. Rev. Lett. 109, 147402 (2012)

    ADS  Google Scholar 

  39. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)

    ADS  Google Scholar 

  40. J.J. Thomson, Cathode rays. Philos. Mag. 44, 293–316 (1897)

    Google Scholar 

  41. A. Tiselius, Nobel Lectures: Chemistry 1942–1962 (Elsevier, Amsterdam, 1964)

    Google Scholar 

  42. T. van Oudheusden, E.F. de Jong, S.B. van der Geer, W.P.E.M. Op’t Root, O.J. Luiten, B.J. Siwick, Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 102, 093501 (2007)

    ADS  Google Scholar 

  43. W. Villiger, A. Bremer, Ultramicrotomy of biology objects: from the beginning to the present. J. Struct. Bio. 104, 178–188 (1990)

    Google Scholar 

  44. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Prémont-Schwarz, T. Elsaesser, Concerted electron and proton transfer in ionic crystals mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 133, 064509 (2010)

    ADS  Google Scholar 

  45. F. Zamponi, Z. Ansari, M. Woerner, T. Elsaesser, Femtosecond powder diffraction with a laser-driven hard X-ray source. Opt. Express 18, 947–961 (2010)

    ADS  Google Scholar 

  46. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, T. Elsaesser, Ultrafast large-amplitude relocation of electronic charge in ionic crystals. Proc. Natl. Acad. Sci. USA 109, 5207–5217 (2012)

    ADS  Google Scholar 

  47. F. Zamponi, J. Stingl, M. Woerner, T. Elsaesser, Ultrafast soft-mode driven charge relocation in an ionic crystal. Phys. Chem. Chem. Phys. 14, 6156–6159 (2012)

    Google Scholar 

  48. A.H. Zewail, 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L.C. (2020). Introduction. In: Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54851-3_1

Download citation

Publish with us

Policies and ethics