Skip to main content

Research into Geometry of Direct-Flow Duct of Hydraulic Generator

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) (ICIE 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 749 Accesses

Abstract

The results of theoretical computation work and experimental studies of the geometry of the confuser-diffuser direct-flow duct of a hydraulic generator are presented. The purpose of the paper is to establish the optimal, in terms of the capacity of the hydraulic generator, angles of the flow contraction in the inlet confuser and the angles of the flow expansion in the outlet diffuser, to determine the appropriate ratio of the length of these components with the diameter of the duct neck and to increase the efficiency of the hydraulic generator. In the study of the direct-flow duct geometry of the hydraulic generator, we used micromanometric construction of velocity and flow pressure diagrams, while the Pitot-Prandtl high-speed tube was used as a receiving element and the MMH type micromanometer was used as a recording element. The research results have shown that the optimal angles of the flow contraction in the confuser are 30–35° with its length of not more than 1–2 diameters of the duct neck, and the optimal angles of the flow expansion in the diffuser are 7–8° with its length of at least 4–5 diameters of the duct neck. In the course of the study, the optimal geometry of the confuser-diffuser direct-flow duct of the hydraulic generator was established, which provides the highest capacity and, consequently, the highest efficiency. The latter indicates the feasibility of practical application of the research results in the development of new hydraulic generators that convert water flows into electrical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volkov AE (2009) Sposob i ustrojstvo sistemy Volkova dlja proizvodstva gidrojenergii metodom “parusnogo” zahvata rechnyh, prilivnyh i okeanicheskih techenij, a takzhe morskih voln (Method and device of the Volkov system for the production of hydropower by the “sailing” capture of river, tidal and ocean currents, as well as sea waves). Patent RU 2 374 483 C2, 27 Nov 2009, No 33

    Google Scholar 

  2. Sandermann FG (2012) Ustanovka dlja vyrabotki jelektrojenergii, rabotajushhaja ot potoka vody (Power plant powered by water flow). Patent RU 2 451 823 C2, 27 May 2012

    Google Scholar 

  3. Bolotin NB (2009) Al’ternativnyj istochnik jenergii (Alternative energy source). Patent RU 2 367 814 C1, 20 Sept 2009

    Google Scholar 

  4. Bolotin NB (2010) Gidrogenerator, rabotajushhij na morskih techenijah (Offshore hydraulic generator). Patent RU 2 382 231 C2, 20 Feb 2010

    Google Scholar 

  5. Bolotin NB (2009) Gidrogenerator (Hydraulic generator). Patent RU 2 370 660 C1, 20 Oct 2009

    Google Scholar 

  6. Ustyuzhin AV (2006) Gidroturbina (Hydraulic turbine). Patent RU No 2 277 182, 27 May 2006

    Google Scholar 

  7. Kukankov SN, Goncharov VV, Ponamorenko AE, Kukankov SS (2013) Ustrojstvo preobrazovanija jenergii otrabotannoj vody v jelektrojenergiju (A device for converting waste water energy into electricity). Patent RU 2 492 352 C2, 10 Sept 2013

    Google Scholar 

  8. Chernousov VF, Rusakov LA (2009) Ustrojstvo dlja poluchenija jenergii ot kanalizacionnyh stokov (Device for receiving energy from sewage). Patent RU 84474 U1, 10 July 2009

    Google Scholar 

  9. Mini-GJeS—Malye gidroturbiny (Mini hydropower stations—small hydro turbines). https://manbw.ru/analitycs/mini-GES_hydro-turbine_hydroelectric-power-plant.html. Accessed 10 Jan 2020

  10. Makotrina LV (2014) Vodosnabzhenie i vodootvedenie s osnovami gidravliki (Water supply and drainage with the basics of hydraulics). IRGTU (Irkutsk State Technical University), Irkutsk, p 187

    Google Scholar 

  11. Trevetan M (2013) Jelektrogenerirujushhii apparat (Power generating apparatus). Patent WO No 2013/116899 A1

    Google Scholar 

  12. Gorshenin DS, Martynov AK (1967) Rukovodstvo k prakticheskim zanjatijam v ajerodinamicheskoj laboratorii (Guide to practical exercises in the aerodynamic laboratory). Mashinostroenie, Moscow, p 224

    Google Scholar 

  13. Gorshenin DS, Martynov AK (1977) Metody i zadachi prakticheskoj ajerodinamiki (Methods and tasks of practical aerodynamics). Mashinostroenie, Moscow, p 240

    Google Scholar 

  14. Zhukovskij NE (1950) Polnoe sobranie sochinenij (Complete set of works). vol VII, p 65

    Google Scholar 

  15. Garkina IA, Danilov AM, Proshin AP, Sokolova YuA (2005) Planirovanie jeksperimenta. Obrabotka opytnyh dannyh (Planning an experiment. Experimental Data Processing). Paleotip, Moscow, p 272

    Google Scholar 

  16. Osipov AG (2018) Raschetno-teoreticheskie i prakticheskie issledovanija universal’nyh pozharnyh stvolov Osipovyh (Theoretical computation and practical studies of the Osipov universal fire-fighting hose). Vestnik IRNITU 22(3):44–53

    Google Scholar 

  17. Osipov GI, Osipov AG, Osipova AV (1998) Pozharnyj stvol Osipovyh (Osipov universal fire-fighting hose). Patent RU 2111782, No 15

    Google Scholar 

  18. Povkh IL (1959) Ajerodinamicheskij jeksperiment v mashinostroenii (Aerodynamic experiment in mechanical engineering). Mashgiz, Leningrad, p 395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Osipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osipov, A. (2021). Research into Geometry of Direct-Flow Duct of Hydraulic Generator. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-54814-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54814-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54813-1

  • Online ISBN: 978-3-030-54814-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics