Skip to main content

Trichoderma Species: A Blessing for Crop Production

  • Chapter
  • First Online:
  • 634 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

Abstract

Trichoderma species are such a soil fungi which are present worldwide. A wide range of soil habitats ranging from cool temperate to tropical climates can be colonized by them. These include niches covered with field crops, orchards, forests, pasture, and also the soils of desert environment. The saprophytic nature of Trichoderma makes it capable of surviving in the soil’s uppermost layer (F and H) where mycelium can be recovered in a huge quantity. Some Trichoderma species have also been recovered from the habitat representing very adverse ecosystems like mangrove swamps, salt marshes, and estuarine sediments. Survival in such an environment with adverse osmotic potential is a real challenge for Trichoderma. T. viride has been noticed to widely colonize such environments as it is probably the most widespread in nature. Species of Trichoderma have been found to be of immense benefit for the crop. These species have been found to promote the plant growth in addition to their capability of disease management, abiotic stress management, and also for enhancing the rate of seed germination. The role of Trichoderma spp. in managing the abiotic stress has now gained momentum. Several species of Trichoderma have been found to alleviate the drought and heat stress in crops like rice and wheat by interfering in the scavenging activities of free radicals and reactive oxygen species generated as a result of drought or heat exposure. Trichoderma treated plants have also been found to properly compensate for the water losses, thus saving the plants against excess evapotranspiration of water under a water deficit environment. In some of the recent studies, they have also been found to be of greater use for inducing plant defense responses against plant diseases. They also have been found to interfere in the regulation of gene expression mechanisms for disease management and abiotic stress management as well. Nano science is another recent domain where Trichoderma has a role for nano-particle synthesis. Several enzymes and other secondary metabolites produced by Trichoderma species have been found to be of a greater role and importance in industrial use such as clothing and textiles along with food industries. Trichoderma spp. are also used as sources of transgenes for developing disease-resistant varieties through genetic engineering. These activities need to be exploited for increasing the high value and quality crop production and also for industrial applications. However, there is a strong need to concentrate on exploring the biodiversity of Trichoderma to develop some novel potential strains/isolates than the existing one or it should be developed using genetic engineering and molecular tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal S, Samrah T, Viqar S, Jehan A, Syed EH (2013) Managing the root diseases of okra with endo-root plant growth promoting Pseudomonas and Trichoderma viride associated with healthy okra roots. Pak J Bot 45:1455–1460

    Google Scholar 

  • Agrawal T, Kotasthane AS (2012) Differential response of rice genotypes to bioinoculants. J Mycol Plant Pathol 42(3):310–313

    Google Scholar 

  • Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol 100:5979–5987

    Article  CAS  PubMed  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ahmed AA, Dutta P (2019) Trichoderma asperellum mediated synthesis of silver nanoparticles: characterization and its physiological effects on tea [Camellia sinensis( L.) Kuntze var. assamica (J. Masters) Kitam.]. Int J Curr Microbiol App Sci 8(04):1215–1229

    Article  CAS  Google Scholar 

  • Ahmed AS, Sanchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–829

    Article  Google Scholar 

  • Alfano G, Ivey ML, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitink HAJ (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97(4):429–437

    Article  CAS  PubMed  Google Scholar 

  • Amin F, Razdan VK, Mohid Din FA, Bhat KA, Banday S (2010) Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J Phytol 2(10):38–41

    Google Scholar 

  • Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G (2016) Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announc 4(1):e01747–e01715. https://doi.org/10.1128/genomeA.01747-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanism of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Biswas SK, Ratan VED, Srivastava SSL, Singh R (2008) Influence of seed treatment with biocides and foliar spray with fungicides for management of brown leaf spot and sheath blight of paddy. Indian Phytopathol 61(1):55–59

    Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39:214–228

    Article  CAS  PubMed  Google Scholar 

  • Bokhari FM (2009) Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch Phytopathol Plant Protect 42(4):361–369

    Article  CAS  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147(2):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckner H, Graf H (1983) Paracelsin, a peptide antibiotic containing alpha-aminoisobutyric acid, isolated from Trichoderma reesei Simmons. Part A. Experientia 39:528–530

    Article  CAS  PubMed  Google Scholar 

  • Bruckner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. A study of the production of extracellular metabolites by Trichoderma species. Mycopathologia 137(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ (2009) Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett 299(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Chozin MAM, Lubis I, Junaedi A, Ehara H (2014) Some physiological character responses of rice under drought conditions in a paddy system. J Int Soc Southeast Asian Agric Sci 20(1):104–114

    Google Scholar 

  • Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric 95(8):1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Conway KE, Khan BA (1990) Enhanced growth of broccli transplants by the biocontrol fungi Trichoderma harzianum and Laetisariaarvalis. Phytopathology 80:434

    Article  Google Scholar 

  • Cornejo CHA, Rodriguez ML, Cuevas AR, Bucio LJ (2014) Trichoderma spp. improves growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and na+ elimination through root exudates. Mol Plant-Microbe Interact 27(6):503–514

    Article  CAS  Google Scholar 

  • Dababat AA, Sikora RA, Hauschild R (2006) Commun use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Agric Appl Biol Sci 71(3 Pt B):953–961

    CAS  Google Scholar 

  • Daragó Á, Szabó M, Hrács K, Takács A, Nagy PI (2013) In vitro investigations on the biological control of Xiphinema index with Trichoderma species. Helminthologia 50(2):132–137

    Article  Google Scholar 

  • Degenkolb T, von Dohren H, Nielsen KF, Samuels GJ, Bruckner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680

    Article  CAS  PubMed  Google Scholar 

  • Deka M (2000) Effect of drought on physiological traits of upland ahu (rabi) rice (Oryza sativa L.) cultivars at vegetative stage. Crop Res 19(3):434–439

    Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  PubMed  Google Scholar 

  • Devi R, Kaur N, Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian J Biochem Biophys 49(4):257–265

    CAS  PubMed  Google Scholar 

  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51:543–547

    CAS  PubMed  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19(8):838–853

    Article  PubMed  CAS  Google Scholar 

  • Ejechi BO (1997) Biological control of wood decay in an open tropical environment with Penicillium sp. and Trichoderma viride. Int Biodeterior Biodegradation 39(4):295–299

    Article  Google Scholar 

  • Eziashi EI, Uma NU, Adekunle AA, Airede CE (2006) Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. Afr J Biotechnol 5:703–706

    CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L et al (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  PubMed  Google Scholar 

  • Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J (1995) Antimicrobal enzymes: applications and future potential in the food industry. Trends Food Sci Technol 6:390–396

    Article  CAS  Google Scholar 

  • Galante YM, Conti A, Monteverdi R (1998) Application of Trichoderma enzymes in the food and feed industries. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 327–342

    Google Scholar 

  • Gangwar GP (2013) Growth promotion of rice seedlings by fungal and bacterial bioagents effective against bacterial leaf blight of rice. J Appl Nat Sci 5(2):430–434

    Article  Google Scholar 

  • Gnanamangai BM, Ponmurugan P, Jeeva SE, Manjukarunambika K, Elango V, Hemalatha K, Kakati JP, Mohanraj R, Prathap S (2017) Biosynthesised silver and copper nanoformulation as foliar spray to control bird’s eye spot disease in tea plantations. IET Nanobiotechnol 11(8):917–928

    Article  Google Scholar 

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health 43(3):237–240

    Article  CAS  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47(6):381–388

    Article  CAS  PubMed  Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2014) Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress. Afr J Agric Res 9(19):1430–1434

    Article  CAS  Google Scholar 

  • Haggag WM, Abouziena HF, Abd-El-Kreem F, El Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm Res 7(10):882–889

    Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defence responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004a) Interactions between Trichoderma harzianum strain T22 and maize inbred line M017 and effects of these interactions on diseases by Pythium ultimum and Collectotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004b) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D (2014) Alleviation of abiotic salt stress in Ochradenusbaccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact 9:857–868. https://doi.org/10.1080/17429145.2014.983568

    Article  CAS  Google Scholar 

  • Hermosa R, Botella L, Keck E, Jiménez JÁ, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168(11):1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Chet I (2004) The biological control agent Trichoderma—from fundamentals to applications. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp 147–156

    Google Scholar 

  • Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Hussein M (2016) Silver tolerance and silver nanoparticle biosynthesis by Neoscytalidium novaehollandae and Trichoderma inhamatum. Eur J Biol Res 6(1):28–35

    CAS  Google Scholar 

  • Jagtap GP, Jangam AM, Deya U (2012) Management of bacterial blight of cotton caused by Xanthomonas axonopodis pv. malvacearum. Sci J Microbiol 1(1):10–18

    Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin

    Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12(6):1059–1065

    Article  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98(2):533–544

    Article  CAS  PubMed  Google Scholar 

  • Konappa N, Krishnamurthy S, Siddaiah CN, Ramachandrappa NS, Chowdappa S (2018) Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum. Egypt J Biol Pest Control 28(1):63

    Article  Google Scholar 

  • Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vágvölgyi C, Nagy E (2005) Acta Microbiol Immunol Hung 52(2):169–184

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Sandor E, Druzhinina IS (2007) Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem Biodivers 4:1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Kyalo G, Affokpon A, Coosemans J, Coynes DL (2007) Commun Biological control effects of Pochoniachlamysdosporia and Trichoderma isolates from Benin (West-Africa) on root-knot nematodes. Agric Appl Biol Sci 72(1):219–223

    CAS  Google Scholar 

  • Li C, Yang Z, Zhang RHC, Zhang D, Chen S, Ma L (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol 168(4):470–477

    Article  CAS  PubMed  Google Scholar 

  • Lo CT, Liao TF, Deng TC (2000) Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90:S47

    Google Scholar 

  • Lorito M, Woo SL (2015) Discussion agronomic. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International, Berlin, pp 345–353. https://doi.org/10.1007/978-3-319-08575-3_36

    Chapter  Google Scholar 

  • Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60:515–522

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Morgan J, Zerbi G, Lecain D (1997) Water stress imposition rate affects osmotic adjustment and cell wall properties in winter wheat. Ital J Agron 1:11–20

    Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553

    Article  CAS  PubMed  Google Scholar 

  • Mastouri F (2010) Use of Trichoderma spp. to improve plant performance under abiotic stresses. Ph.D. Thesis, Cornell Univeristy

    Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11):1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Mathivanan N, Prabavathy VR, Vijayanandraj VR (2006) Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex S.F. Gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J Phytopathol 154(11/12):697–701

    Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100(26):15965–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A (2017) Journey of Trichoderma: plant stress amelioration to nanosynthesis. Genet Mol Biol Res 1(1):1

    Google Scholar 

  • Mishra DS, Sinha AP (2007) Plant growth-promoting activity of some fungal and bacterial agents on rice seed germination and seedling growth. Trop Agric 77(3):188–191

    Google Scholar 

  • Mishra G, Sapre S, Sharma A, Tiwari S (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol 18(6):992–1000

    Article  CAS  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4(1):1–4

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Raghu K (1997) Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia 139(3):151–155

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2004) Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 70(1):542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee KP, Nautiyal CS, Mukhopadhyay AN (2008) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg

    Google Scholar 

  • Mukhtar T (2018) Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pak J Zool 50(4):1589–1592

    Google Scholar 

  • Nagy V, Seidl V, Szakacs G, Komoń-Zelazowska M, Kubicek CP, DruzhininaI (2007) Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensustricto indicates superior chitinase formation. Appl Environ Microbiol 73(21):7048–7058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallathambi P, Padmanaban P, Mohanraj D (2001) Fungicide resistance in sugarcane associated Trichoderma isolates. J Mycol Plant Pathol 31:125

    Google Scholar 

  • Naserinasab F, Sahebani N, Etebarian HR (2011) Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on tomato. Afr J Food Sci 5(4):276–280

    Google Scholar 

  • Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 37:193–200

    Article  CAS  PubMed  Google Scholar 

  • Nicol RW, Traquair JA, Bernards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 80(5):557–562

    Article  CAS  Google Scholar 

  • Nielsen KF, Grafenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    Article  CAS  PubMed  Google Scholar 

  • Oros G, Naar Z, Cserhati T (2011) Growth response of Trichoderma species to organic solvents. Mol Inf 30:276–285

    Article  CAS  Google Scholar 

  • Pandey KK, Upadhyay JP (1998) Sensitivity of different fungicides to Fusarium udum, Trichoderma harzianum and Trichoderma viride for integrated approach of disease management. Veg Sci 2:89–92

    Google Scholar 

  • Papavizas GC, Dunn MT, Lewis JA, Beagle-Ristaino JE (1984) Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171

    Article  CAS  Google Scholar 

  • Peeran MF, Kamil D, Prasad L (2017) Extracellular myco-synthesis of silver nanoparticles from Trichoderma virens and Metarhizium nisopliae. J Mycol Plant Pathol 47(4):424–429

    Google Scholar 

  • Perazzoli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660

    Article  CAS  Google Scholar 

  • Prasad S, Bagali P, Hittalmani S, Shashidhar H (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78(2):162–164

    CAS  Google Scholar 

  • Probioma (2006) El SoyeroEcologico. Ed. 2 Noviembre. Santa Cruz

    Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28(S1):S298–S308

    Article  CAS  Google Scholar 

  • Rashid M, Chowdhury MSM, Sultana N (2013) In-vitro screening of some chemicals and biocontrol agents against Erwinia carotovora subsp. carotovora, the causal agent of soft rot of potato (Solanum tuberosum). Agriculturists 11(2):1–9

    Article  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387–400. https://doi.org/10.1007/s11104-011-0858-z

    Article  CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2012) Seed biopriming with salinity tolerant isolates of Trichoderma harzianum alleviates salt stress in rice growth, physiological and biochemical characteristics. J Plant Pathol 94(2):353–365

    Google Scholar 

  • Reddy ASR, Madhavi GB, Reddy KG, Yellareddygari SK, Reddy MS (2011) Effect of seed biopriming with Trichoderma viride and Pseudomonas fluorescens in chickpea (Cicer arietinum) in Andhra Pradesh, India. Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. In: Proceedings of the 2nd Asian PGPR Conference, Beijing, 21–24, pp 324–429

    Google Scholar 

  • Reese ET (1976) History of the cellulase program at the US Army Natick Development Center. Biotechnol Bioeng Symp 6:9–20

    CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry 7:89–123

    Article  CAS  Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42(9):749–760

    Article  CAS  PubMed  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44(11):1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey M, Delgado-Jarana J, Benítez T (2001) Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl Microbiol Biotechnol 55:604–608

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella (2002) Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1(4):594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routray S, Dey D, Baral S, Das AP, Mahantheshwara B (2016) Genetic improvement of natural enemies: a review. Agric Rev 37(4):325–332

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biomass. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interact 22(3):291–301

    Article  CAS  PubMed  Google Scholar 

  • Sandhya C, Adapa LKK, Nampoothri M, Binod P, Szakacs G, Pandey A (2004) Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J Basic Microbiol 44:49–58

    Article  CAS  PubMed  Google Scholar 

  • Sawant IS, Mukhopadhyay AN (1990) Integration of metalaxyl MZ with Trichoderma harzianum for the control of Pythium damping-off in sugarbeet. Indian Phytopathol 43:535–541

    CAS  Google Scholar 

  • Scherm B, Schmoll M, Balmas V, Kubicek CP, Migheli Q (2009) Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach. Curr Genet 55(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP (2007) The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactose. Mol Microbiol 66:890–900

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Schmoll M, Scherm B, Balmas V, Seiboth B, Migheli Q, Kubicek CP (2006) Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiol Lett 257(1):145–151

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009) Transcriptomic response of oparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharad U, Sharma G, Moger N, Bhat S, Krishnaraj PU (2015) Functional validation of plant transformation vector with stacked ech42 and bgn from Trichoderma in tomato for fungal disease resistance. Indian J Genet Plant Breed 75(1):86–92

    Article  CAS  Google Scholar 

  • Sharma DD, Gupta VP, Chandrashekhar DS (1999) Compatibility of certain biocontrol agents with chemical pesticides and fertilizers. Indian J Seric 38:79–82

    Google Scholar 

  • Shelar GB, Chavan AM (2015) Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact on germination status of oil seed. Biolife 3(1):109–113

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2014) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166(2):171–182

    Article  CAS  Google Scholar 

  • Simmons EG (1977) Classification of some cellulase-producing Trichoderma species. In: Bigelow HE, Simmons EG (eds) 2nd international mycological congress. University of South Florida, Tampa, p 618

    Google Scholar 

  • Simon LS, Bhandari G (2009) Efficacy of bio-agents for management of Hirschmanniella mucronata on rice. Ann Plant Protect Sci 17(2):522–523

    Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 139–192

    Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant–parasitic nematodes in Israel. Integr Pest Manag Rev 3:169–175

    Article  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Suárez MB, Vizcaíno JA, Llobell A, Monte E (2007) Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 51(5):331–342

    Article  PubMed  CAS  Google Scholar 

  • Tallapragada P, Gudimi M (2011) Phosphate solubility and biocontrol activity of Trichoderma harzianum. Turk J Biol 35(5):593–600

    CAS  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277

    Article  CAS  PubMed  Google Scholar 

  • Tomer A, Singh R, Durga P (2018) Compatibility of Trichoderma harzianum with systemic and two non systemic fungicides of in vitro. Asian J Crop Sci 10(4):174–179

    Article  Google Scholar 

  • Tseng SC, Liu SY, Yang HH, Lo CT, Peng KC (2008) Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. J Agric Food Chem 56(16):6914–6922

    Article  CAS  PubMed  Google Scholar 

  • Umamaheswari R, Somasekhar N, Manorama K, Joseph TA (2012) Eco-friendly management of potato cyst nematodes in the Nilgiris of Tamil Nadu. Potato J 39(2):185–190

    Google Scholar 

  • Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodegr 7(3):343

    Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei: a route for large-scale production of AgNPs. Insci J 2011:65–79

    Article  CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  PubMed  Google Scholar 

  • Viterbo A, Ramot O, Chemin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81(1–4):549–556

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71(10):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22(8):837–845

    Google Scholar 

  • Wells, H.D., Bell, D.K. and Casimir, A.J. (1972). Efficacy of Trichoderma harzianum as a biocontrol for Sclerotiumro/fsii. Phytopathology, 62: 442–447.

    Google Scholar 

  • Wiater A, Szczodrak J, Pleszczynska M (2005) Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 56:137–150

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N et al (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126. https://doi.org/10.2174/1874437001408010071

    Article  Google Scholar 

  • Xue AG, Guo W, Chen Y, Siddiqui I, Marchand G, Liu J, Ren C (2017) Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Prot 96:97–102

    Article  Google Scholar 

  • Yedidia II, Benhamou N, Chet (1999) Induction of defense responses in cucumber plants (Cucumis sativus L. ) By the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65(3):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yehia AH, El-Hassan SA, El-Bahadli AH (1985) Biological seed treatment to control fusarium root rot of broad bean. Egypt J Phytopathol 14:59–66

    Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Biol 1:227–234

    Google Scholar 

  • Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71(3):1591–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Yuan J, Yang X, Cui Y, Chen L, Ran W et al (2013) Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil 368:433–444. https://doi.org/10.1007/s11104-012-1519-6

    Article  CAS  Google Scholar 

  • Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8:1491. https://doi.org/10.3389/fpls.2017.01491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Anbazhagan, P., Viswanath, H.S., Tomer, A. (2020). Trichoderma Species: A Blessing for Crop Production. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_6

Download citation

Publish with us

Policies and ethics