Skip to main content

Dengue Fever and Climate Change

  • 772 Accesses

Part of the Respiratory Medicine book series (RM)

Abstract

Dengue fever is a viral tropical and subtropical mosquito-borne disease of special concern to public health in the context of a changing climate. A growing public health concern exists not only due to the increased magnitude of incidence, but also to the escalating severity of its complications. Several factors have made this once localized disease rise to importance on the world stage during the later half of the nineteenth century, and climate change is expected to further its spread and intensity. Once isolated to a few areas in the tropics, dengue fever and its vectors have shown themselves to be highly adaptable to a wide variety of global environments and dengue fever is now the most rapidly spreading mosquito-borne disease in the world. Population growth, unplanned and uncontrolled urbanization, and increased travel paired with ineffective vector control, disease surveillance, and inadequate public health infrastructure have been cited as drivers in the recent escalation of cases. The fact that dengue fever is a vector-borne disease makes it extremely sensitive to climatic variation. To better understand and predict dengue incidence, scientists have sought to define the relationships between climatic factors and the virus, its vectors, and the risk of transmission. A changing climate is predicted to expand the range of suitable habitat for dengue’s mosquito vectors. Within that geographic range, greater portions of the world’s population are predicted to live within a climate conducive to dengue epidemics. In addition to the modeled direct effects of a changing climate on epidemic potential, climate change is predicted to be significantly detrimental to societal and public health services stability in many of the same geographic areas where the population is already at risk of dengue or is expected to be under climate change scenarios.

Keywords

  • Disease vectors
  • Mosquito vectors
  • Urbanization
  • Severe dengue
  • Climate change
  • Epidemic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-54746-2_13
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-54746-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Hardcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4

References

  1. Aguiar M, Stollenwerk N, Halstead SB. The impact of the newly licensed dengue vaccine in endemic countries. PLoS Negl Trop Dis. 2016;10(12):e0005179. https://doi.org/10.1371/journal.pntd.0005179.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Alghazali KA, Teoh BT, Loong SK, Sam SS, Che-Mat-Seri NA, Samsudin NI, et al. Dengue outbreak during ongoing civil war, Taiz, Yemen. Emerg Infect Dis. 2019;25(7) https://doi.org/10.3201/eid2507.180046.

  3. Alirol E, Getaz L, Stoll B, Chappuis F, Loutan L. Urbanisation and infectious diseases in a globalised world. Lancet Infect Dis. 2011;11(2):131–41. https://doi.org/10.1016/s1473-3099(10)70223-1.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Altassan KK, Morin C, Shocket MS, Ebi K, Hess J. Dengue fever in Saudi Arabia: a review of environmental and population factors impacting emergence and spread. Travel Med Infect Dis. 2019; https://doi.org/10.1016/j.tmaid.2019.04.006.

  5. Amarasinghe A, Letson GW. Dengue in the Middle East: a neglected, emerging disease of importance. Trans R Soc Trop Med Hyg. 2012;106(1):1–2. https://doi.org/10.1016/j.trstmh.2011.08.014.

    CrossRef  PubMed  Google Scholar 

  6. Anyamba A, Chretien JP, Britch SC, Soebiyanto RP, Small JL, Jepsen R, et al. Global disease outbreaks associated with the 2015–2016 El Nino event. Sci Rep. 2019;9(1):1930. https://doi.org/10.1038/s41598-018-38034-z.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr. 2007;28(3):251–72. https://doi.org/10.1111/j.1467-9493.2007.00300.x.

    CrossRef  Google Scholar 

  8. Ashshi AM, Alghamdi S, El-Shemi AG, Almdani S, Refaat B, Mohamed AM, et al. Seroprevalence of asymptomatic dengue virus infection and its antibodies among healthy/eligible Saudi blood donors: findings from holy Makkah City. Virology (Auckl). 2017;8:1–5. https://doi.org/10.1177/1178122x17691261.

    CrossRef  Google Scholar 

  9. European Centre for Disease Prevention and Control. Mosquito maps. 2019. Retrieved from https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps

  10. Bangs MJ, Larasati RP, Corwin AL, Wuryadi S. Climatic factors associated with epidemic dengue in Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian J Trop Med Public Health. 2006;37(6):1103–16.

    PubMed  Google Scholar 

  11. Beebe NW, Cooper RD, Mottram P, Sweeney AW. Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis. 2009;3(5):e429. https://doi.org/10.1371/journal.pntd.0000429.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. https://doi.org/10.1038/nature12060.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29(9):460–8. https://doi.org/10.1016/j.pt.2013.07.003.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. https://doi.org/10.1371/journal.pntd.0001760.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JP, Reiner RC, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors. 2014;7:338. https://doi.org/10.1186/1756-3305-7-338.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Braga C, Luna CF, Martelli CM, de Souza WV, Cordeiro MT, Alexander N, et al. Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Trop. 2010;113(3):234–40. https://doi.org/10.1016/j.actatropica.2009.10.021.

    CrossRef  PubMed  Google Scholar 

  17. Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex. 2008;50(3):227–34. Retrieved from <Go to ISI>://WOS:000255699700006.

    PubMed  CrossRef  Google Scholar 

  18. Buliva E, Elhakim M, Tran Minh NN, Elkholy A, Mala P, Abubakar A, Malik S. Emerging and reemerging diseases in the World Health Organization (WHO) Eastern Mediterranean region-progress, challenges, and WHO initiatives. Front Public Health. 2017;5:276. https://doi.org/10.3389/fpubh.2017.00276.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Butterworth MK, Morin CW, Comrie AC. An analysis of the potential impact of climate change on dengue transmission in the Southeastern United States. Environ Health Perspect. 2017;125(4):579–85. https://doi.org/10.1289/ehp218.

    CrossRef  PubMed  Google Scholar 

  20. Calisher CH, Nuti M, Lazuick JS, Ferrari JD, Kappus KD. Dengue in the Seychelles. Bull World Health Organ. 1981;59(4):619–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvez E, Guillaumot L, Millet L, Marie J, Bossin H, Rama V, et al. Genetic diversity and phylogeny of Aedes aegypti, the Main Arbovirus vector in the Pacific. PLoS Negl Trop Dis. 2016;10(1):e0004374. https://doi.org/10.1371/journal.pntd.0004374.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9(75):2708–17. https://doi.org/10.1098/rsif.2012.0138.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Canyon DV, Hii JLK, Muller R. Adaptation of Aedes aegypti (Diptera: Culicidae) oviposition behavior in response to humidity and diet. J Insect Physiol. 1999;45(10):959–64. https://doi.org/10.1016/s0022-1910(99)00085-2.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Carrington LB, Armijos MV, Lambrechts L, Scott TW. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013b;7(4):e2190. https://doi.org/10.1371/journal.pntd.0002190.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg. 2013a;88(4):689–97. https://doi.org/10.4269/ajtmh.12-0488.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Carrington LB, Tran BCN, Le NTH, Luong TTH, Nguyen TT, Nguyen PT, et al. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2018;115(2):361–6. https://doi.org/10.1073/pnas.1715788115.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Cazelles B, Chavez M, McMichael AJ, Hales S. Nonstationary influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS Med. 2005;2(4):313–8. https://doi.org/10.1371/journal.pmed.0020106.

    CrossRef  Google Scholar 

  28. Centers for Disease Control and Prevention. Zika virus: 2016 case counts. April 24, 2019. Retrieved from https://www.cdc.gov/zika/reporting/2016-case-counts.html

  29. Chan M, Johansson MA. The incubation periods of Dengue viruses. PLoS One. 2012;7(11):e50972. https://doi.org/10.1371/journal.pone.0050972.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Chang LH, Hsu EL, Teng HJ, Ho CM. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol. 2007;44(2):205–10. https://doi.org/10.1603/0022-2585(2007)44[205:Dsoaaa]2.0.Co;2.

    CrossRef  PubMed  Google Scholar 

  31. Chantha N, Guyant P, Hoyer S. Control of DHF outbreak in Cambodia. Dengue Bull. 1998;22:69–74.

    Google Scholar 

  32. Chareonviriyaphap T, Akratanakul P, Nettanomsak S, Huntamai S. Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian J Trop Med Public Health. 2003;34(3):529–35.

    PubMed  Google Scholar 

  33. Chien LC, Yu HL. Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence. Environ Int. 2014;73:46–56. https://doi.org/10.1016/j.envint.2014.06.018.

    CrossRef  PubMed  Google Scholar 

  34. Chowell G, Sanchez F. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health. 2006;68(10):40–4. Retrieved from <Go to ISI>://WOS:000237816400004.

    PubMed  Google Scholar 

  35. Christophers S. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. London: Cambridge University Press; 1960.

    Google Scholar 

  36. Ciccozzi M, Lo Presti A, Cella E, Giovanetti M, Lai A, El-Sawaf G, et al. Phylogeny of dengue and Chikungunya viruses in Al Hudayda governorate, Yemen. Infect Genet Evol. 2014;27:395–401. https://doi.org/10.1016/j.meegid.2014.08.010.

    CrossRef  PubMed  Google Scholar 

  37. Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. 2014. Retrieved from Cambridge, UK and New York.

    Google Scholar 

  38. Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. 2014. Retrieved from Cambridge, UK and New York.

    Google Scholar 

  39. Corwin AL, Larasati RP, Bangs MJ, Wuryadi S, Arjoso S, Sukri N, et al. Epidemic dengue transmission in southern Sumatra, Indonesia. Trans R Soc Trop Med Hyg. 2001;95(3):257–65. https://doi.org/10.1016/s0035-9203(01)90229-9.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Costero A, Edman JD, Clark GG, Kittayapong P, Scott TW. Survival of starved Aedes aegypti (Diptera: Culicidae) in Puerto Rico and Thailand. J Med Entomol. 1999;36(3):272–6. https://doi.org/10.1093/jmedent/36.3.272.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis. 2012;6(2):e1470. https://doi.org/10.1371/journal.pntd.0001470.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Eamchan P, Nisalak A, Foy HM, Chareonsook OA. Epidemiology and control of dengue virus infections in Thai villages in 1987. Am J Trop Med Hyg. 1989;41(1):95–101.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, et al. Dengue fever, Hawaii, 2001–2002. Emerg Infect Dis. 2005;11(5):742–9. https://doi.org/10.3201/eid1105.041063.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Ehrenkranz NJ, Ventura AK, Cuadrado RR, Pond WL, Porter JE. Pandemic dengue in Caribbean countries and the southern United States – past, present and potential problems. N Engl J Med. 1971;285(26):1460–9. https://doi.org/10.1056/nejm197112232852606.

    CAS  CrossRef  PubMed  Google Scholar 

  45. Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol. 2014;51(3):496–516. https://doi.org/10.1603/me13214.

    CrossRef  PubMed  Google Scholar 

  46. Eldigail MH, Adam GK, Babiker RA, Khalid F, Adam IA, Omer OH, et al. Prevalence of dengue fever virus antibodies and associated risk factors among residents of El-Gadarif state, Sudan. BMC Public Health. 2018;18(1):921. https://doi.org/10.1186/s12889-018-5853-3.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  47. European Centre for Disease Prevention and Control. Local transmission of dengue fever in France and Spain – 2018 – 22 October 2018 [Press release].

    Google Scholar 

  48. Fagbami AH, Onoja AB. Dengue haemorrhagic fever: an emerging disease in Nigeria, West Africa. J Infect Public Health. 2018;11(6):757–62. https://doi.org/10.1016/j.jiph.2018.04.014.

    CrossRef  PubMed  Google Scholar 

  49. Fan J, Wei W, Bai Z, Fan C, Li S, Liu Q, Yang K. A systematic review and meta-analysis of dengue risk with temperature change. Int J Environ Res Public Health. 2014;12(1):1–15. https://doi.org/10.3390/ijerph120100001.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Farjana T, Tuno N. Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2013;50(4):838–46. https://doi.org/10.1603/me12146.

    CrossRef  PubMed  Google Scholar 

  51. Farnesi LC, Martins AJ, Valle D, Rezende GL. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Memorias Do Instituto Oswaldo Cruz. 2009;104(1):124–6. https://doi.org/10.1590/s0074-02762009000100020.

    CrossRef  PubMed  Google Scholar 

  52. Ferede G, Tiruneh M, Abate E, Wondimeneh Y, Damtie D, Gadisa E, et al. A serologic study of dengue in Northwest Ethiopia: suggesting preventive and control measures. PLoS Negl Trop Dis. 2018;12(5):e0006430. https://doi.org/10.1371/journal.pntd.0006430.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Ferreira MC. Geographical distribution of the association between El Nino South Oscillation and dengue fever in the Americas: a continental analysis using geographical information system-based techniques. Geospat Health. 2014;9(1):141–51. https://doi.org/10.4081/gh.2014.12.

    CrossRef  PubMed  Google Scholar 

  54. Florida Department of Health. Martin county dengue outbreak and serosurvey, Martin County, Florida. 2014. Retrieved from http://www.floridahealth.gov/diseases-and-conditions/dengue/_documents/mc-dengue-survey-summary-june2014.pdf

  55. Focks DA, Brenner RJ, Hayes J, Daniels E. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg. 2000;62(1):11–8.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol. 1993a;30(6):1003–17. https://doi.org/10.1093/jmedent/30.6.1003.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. J Med Entomol. 1993b;30(6):1018–28. https://doi.org/10.1093/jmedent/30.6.1018.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Gagnon AS, Bush ABG, Smoyer-Tomic KE. Dengue epidemics and the El Nino southern oscillation. Clim Chang. 2001;19:34–43.

    Google Scholar 

  59. Ghosh SN, Pavri KM, Singh KR, Sheikh BH, D’Lima LV, Mahadev PV, Ramachandra Rao T. Investigations on the outbreak of dengue fever in Ajmer City, Rajasthan State in 1969. Part I. epidemiological, clinical and virological study of the epidemic. Indian J Med Res. 1974;62(4):511–22.

    CAS  PubMed  Google Scholar 

  60. Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18(3):215–27. https://doi.org/10.1111/j.0269-283X.2004.00513.x.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Gubler D. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health. 2011;39:3–11.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis. 2004;27(5):319–30. https://doi.org/10.1016/j.cimid.2004.03.013.

    CAS  CrossRef  PubMed  Google Scholar 

  63. Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp. 2006;277:3–16; discussion 16–22, 71–13, 251–253. https://doi.org/10.1002/0470058005.ch2.

    CrossRef  PubMed  Google Scholar 

  64. Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol. 2013;158(7):1445–59. https://doi.org/10.1007/s00705-013-1645-3.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Habib RR, Zein KE, Ghanawi J. Climate change and health research in the eastern Mediterranean region. EcoHealth. 2010;7(2):156–75. https://doi.org/10.1007/s10393-010-0330-1.

    CrossRef  PubMed  Google Scholar 

  66. Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360(9336):830–4. https://doi.org/10.1016/s0140-6736(02)09964-6.

    CrossRef  PubMed  Google Scholar 

  67. Hales S, Edwards S, Kovats R. Impacts on health of climate extremes. In: Climate change and human health. Geneva: World Health Organization; 2003.

    Google Scholar 

  68. Hales S, Weinstein P, Woodward A. Dengue fever epidemics in the South Pacific: driven by El Nino Southern Oscillation? Lancet. 1996;348(9042):1664–5. https://doi.org/10.1016/s0140-6736(05)65737-6.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Halstead SB. Dengue virus-mosquito interactions. Annu Rev Entomol. 2008;53:273–91. https://doi.org/10.1146/annurev.ento.53.103106.093326.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Holstein M. Dynamics of Aedes aegypti distribution, density and seasonal prevalence in the Mediterranean area. Bull World Health Organ. 1967;36(4):541–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hopp M, Foley J. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Chang. 2001;48(2–3):441–63.

    CrossRef  Google Scholar 

  72. Humphrey JM, Cleton NB, Reusken CB, Glesby MJ, Koopmans MP, Abu-Raddad LJ. Dengue in the Middle East and North Africa: a systematic review. PLoS Negl Trop Dis. 2016;10(12):e0005194. https://doi.org/10.1371/journal.pntd.0005194.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Hurtado-Diaz M, Riojas-Rodriguez H, Rothenberg SJ, Gomez-Dantes H, Cifuentes E. Short communication: impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health. 2007;12(11):1327–37. Retrieved from <Go to ISI>://WOS:000251716900009.

    CAS  PubMed  CrossRef  Google Scholar 

  74. IPCC. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014.

    Google Scholar 

  75. Jetten TH, Focks DA. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg. 1997;57(3):285–97.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Johansson MA, Dominici F, Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis. 2009;3(2) https://doi.org/10.1371/journal.pntd.0000382.

  77. Jury MR. Climate influence on dengue epidemics in Puerto Rico. Int J Environ Health Res. 2008;18(5):323–34. https://doi.org/10.1080/09603120701849836.

    CrossRef  PubMed  Google Scholar 

  78. Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One. 2018;13(12):e0210122. https://doi.org/10.1371/journal.pone.0210122.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Keating J. An investigation into the cyclical incidence of dengue fever (vol 53, pg 1587, 2001). Soc Sci Med. 2002;55(9):1691. https://doi.org/10.1016/s0277-9536(02)00197-1.

    CrossRef  Google Scholar 

  80. Knudsen AB, Slooff R. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull World Health Organ. 1992;70(1):1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kolawole OM, Seriki AA, Irekeola AA, Bello KE, Adeyemi OO. Dengue virus and malaria concurrent infection among febrile subjects within Ilorin metropolis, Nigeria. J Med Virol. 2017;89(8):1347–53. https://doi.org/10.1002/jmv.24788.

    CAS  CrossRef  PubMed  Google Scholar 

  82. Kraemer MUG, Reiner RC Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854–63. https://doi.org/10.1038/s41564-019-0376-y.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A. 2011;108(18):7460–5. https://doi.org/10.1073/pnas.1101377108.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Laureano-Rosario AE, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale JA, Muller-Karger FE. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Trop. 2017;172:50–7. https://doi.org/10.1016/j.actatropica.2017.04.017.

    CrossRef  PubMed  Google Scholar 

  85. Lenhart AE, Castillo CE, Oviedo M, Villegas E. Use of the pupal/demographic-survey technique to identify the epidemiologically important types of containers producing Aedes aegypti (L.) in a dengue-endemic area of Venezuela. Ann Trop Med Parasitol. 2006;100:S53–9. https://doi.org/10.1179/136485906x105516.

    CrossRef  PubMed  Google Scholar 

  86. Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 2018;67:25–35. https://doi.org/10.1016/j.ijid.2017.11.026.

    CrossRef  PubMed  Google Scholar 

  87. Lew RJ, Tsai WY, Wang WK. Dengue outbreaks in Hawai’i after WWII – a review of public health response and scientific literature. Hawaii J Med Public Health. 2018;77(12):315–8.

    PubMed  PubMed Central  Google Scholar 

  88. Lewis D. Observations on Aedes aegypti under controlled atmospheric conditions. Bull Entomol Res. 1933;24:363–72.

    CrossRef  Google Scholar 

  89. Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8(11):e3301. https://doi.org/10.1371/journal.pntd.0003301.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  90. Lim JK, Carabali M, Lee JS, Lee KS, Namkung S, Lim SK, et al. Evaluating dengue burden in Africa in passive fever surveillance and seroprevalence studies: protocol of field studies of the dengue vaccine initiative. BMJ Open. 2018;8(1):e017673. https://doi.org/10.1136/bmjopen-2017-017673.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Liu-Helmersson J, Quam M, Wilder-Smith A, Stenlund H, Ebi K, Massad E, Rocklov J. Climate change and aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine. 2016;7:267–77. https://doi.org/10.1016/j.ebiom.2016.03.046.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklov J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014;9(3):e89783. https://doi.org/10.1371/journal.pone.0089783.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Lumsden WHR. Observations on the effect of microclimate on biting by Aedes-Aegypti (L) (Dipt Culicid). J Exp Biol. 1947;24(3–4):361–73. Retrieved from <Go to ISI>://WOS:A1947UF60700010.

    CAS  PubMed  Google Scholar 

  94. Macdonald WW. Aedes aegypti in Malaya. II. Larval and adult biology. Ann Trop Med Parasitol. 1956;50(4):399–414. Retrieved from <Go to ISI>://MEDLINE:13395330.

    CAS  PubMed  CrossRef  Google Scholar 

  95. Magrin GO, Marengo JA, Boulanger J-P, Buckeridge MS, Castellanos E, Poveda G, et al. Central and South America. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press; 2014.

    Google Scholar 

  96. Mavian C, Dulcey M, Munoz O, Salemi M, Vittor AY, Capua I. Islands as hotspots for emerging mosquito-borne viruses: a one-health perspective. Viruses. 2018;11(1) https://doi.org/10.3390/v11010011.

  97. McIver L, Kim R, Woodward A, Hales S, Spickett J, Katscherian D, et al. Health impacts of climate change in Pacific Island countries: a regional Assessment of vulnerabilities and adaptation priorities. Environ Health Perspect. 2016;124(11):1707–14. https://doi.org/10.1289/ehp.1509756.

    CrossRef  PubMed  Google Scholar 

  98. McMichael AJ, Woodruff R, Whetton P, Hennessy K, Nicholls N, Hales S, et al. Human health and climate change in Oceania: a risk assessment. Canberra: Commonwealth Department of Health and Ageing; 2002.

    Google Scholar 

  99. Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MU, Scott TW, et al. The many projected futures of dengue. Nat Rev Microbiol. 2015;13(4):230–9. https://doi.org/10.1038/nrmicro3430.

    CAS  CrossRef  PubMed  Google Scholar 

  100. Monaghan AJ, Sampson KM, Steinhoff DF, Ernst KC, Ebi KL, Jones B, Hayden MH. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Clim Chang. 2018;146(3–4):487–500.

    CAS  CrossRef  Google Scholar 

  101. Moore CG, Cline BL, Ruiztiben E, Lee D, Romneyjoseph H, Riveracorrea E. Aedes-aegypti in Puerto-Rico – environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg. 1978;27(6):1225–31. https://doi.org/10.4269/ajtmh.1978.27.1225.

    CAS  CrossRef  PubMed  Google Scholar 

  102. Moore PR, Johnson PH, Smith GA, Ritchie SA, Van Den Hurk AF. Infection and dissemination of dengue virus type 2 in Aedes aegypti, Aedes albopictus, and Aedes scutellaris from the Torres Strait, Australia. J Am Mosq Control Assoc. 2007;23(4):383–8. https://doi.org/10.2987/5598.1.

    CrossRef  PubMed  Google Scholar 

  103. Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis. 2017;11(4):e0005568. https://doi.org/10.1371/journal.pntd.0005568.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  104. Moreno-Banda GL, Riojas-Rodriguez H, Hurtado-Diaz M, Danis-Lozano R, Rothenberg SJ. Effects of climatic and social factors on dengue incidence in Mexican municipalities in the state of Veracruz. Salud Publica Mex. 2017;59(1):41–52. https://doi.org/10.21149/8414.

    CrossRef  PubMed  Google Scholar 

  105. Moreno-Madrinan MJ, Turell M. History of mosquitoborne diseases in the United States and implications for new pathogens. Emerg Infect Dis. 2018;24(5):821–6. https://doi.org/10.3201/eid2405.171609.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  106. Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environ Health Perspect. 2013;121(11–12):1264–72. https://doi.org/10.1289/ehp.1306556.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  107. Musso D, Rodriguez-Morales AJ, Levi JE, Cao-Lormeau VM, Gubler DJ. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect Dis. 2018;18(11):E355–61. https://doi.org/10.1016/s1473-3099(18)30269-x.

    CrossRef  PubMed  Google Scholar 

  108. Muto R. Summary of dengue situation in WHO Western Pacific Region. Dengue Bull. 1998;22:12–9.

    Google Scholar 

  109. Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C, Campbell-Lendrum D. Climatic and social risk factors for Aedes infestation in rural Thailand. Tropical Med Int Health. 2003;8(7):650–9. https://doi.org/10.1046/j.1365-3156.2003.01075.x.

    CrossRef  Google Scholar 

  110. Ndenga BA, Mutuku FM, Ngugi HN, Mbakaya JO, Aswani P, Musunzaji PS, et al. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya. PLoS One. 2017;12(12):e0189971. https://doi.org/10.1371/journal.pone.0189971.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P. Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press; 2014.

    Google Scholar 

  112. Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, et al. Small islands. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge, UK/New York: Cambridge University Press; 2014.

    Google Scholar 

  113. O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I, et al. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2018;2:36. https://doi.org/10.12688/gatesopenres.12844.2.

    CrossRef  PubMed  Google Scholar 

  114. Ooi EE, Goh KT, Gubler DJ. Denque prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12(6):887–93. https://doi.org/10.3201/10.3201/eid1206.051210.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  115. World Health Organization. Dengue fever – Egypt. 2015. Retrieved from https://www.who.int/csr/don/12-november-2015-dengue/en/

  116. Pan American Health Organization. Reported cases of dengue fever in the Americas. Retrieved from http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html

  117. Pan American Health Organization. Dengue: guidelines for patient care in the Region of the Americas. Washington, DC: Pan American Health Organization; 2016.

    Google Scholar 

  118. Patz JA, Martens WJ, Focks DA, Jetten TH. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect. 1998;106(3):147–53. https://doi.org/10.1289/ehp.98106147.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  119. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11(14–15):1177–85. https://doi.org/10.1016/j.micinf.2009.05.005.

    CAS  CrossRef  PubMed  Google Scholar 

  120. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector Borne Zoonotic Dis. 2010;10(3):259–66. https://doi.org/10.1089/vbz.2009.0005.

    CrossRef  PubMed  Google Scholar 

  121. Phillips ML. Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect. 2008;116(9):A382–8. https://doi.org/10.1289/ehp.116-a382.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  122. Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg. 2000;62(3):378–83.

    CAS  PubMed  CrossRef  Google Scholar 

  123. Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti--a review. Mem Inst Oswaldo Cruz. 2013;108(Suppl 1):11–7. https://doi.org/10.1590/0074-0276130395.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  124. Quam MB, Sessions O, Kamaraj US, Rocklov J, Wilder-Smith A. Dissecting Japan’s dengue outbreak in 2014. Am J Trop Med Hyg. 2016;94(2):409–12. https://doi.org/10.4269/ajtmh.15-0468.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  125. Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, et al. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg. 2008;78(3):364–9.

    PubMed  CrossRef  Google Scholar 

  126. Rathor HR. The role of vectors in emerging and re-emerging diseases in the Eastern Mediterranean Region. Dengue Bull. 2000;24:103–9.

    Google Scholar 

  127. Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109(Suppl 1):141–61. https://doi.org/10.1289/ehp.01109s1141.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  128. Rogers DJ. Dengue: recent past and future threats. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1665) https://doi.org/10.1098/rstb.2013.0562.

  129. Rogers DJ, Wilson AJ, Hay SI, Graham AJ. The global distribution of yellow fever and dengue. Adv Parasitol. 2006;62:181–220. https://doi.org/10.1016/s0065-308x(05)62006-4.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  130. Romero-Vivas CME, Arango-Padilla P, Falconar AKI. Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann Trop Med Parasitol. 2006;100:S87–95. https://doi.org/10.1179/136485906x105543.

    CrossRef  PubMed  Google Scholar 

  131. Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, et al. Concurrent outbreaks of dengue, chikungunya and Zika virus infections – an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill. 2014;19(41):20929.

    PubMed  CrossRef  Google Scholar 

  132. Russell L. Poverty, climate change and health in pacific island countries. Issues to consider in discussion, debate and policy development. 2011. Retrieved from https://ses.library.usyd.edu.au//bitstream/2123/9202/1/lrpacificislands2011.pdf

  133. Sanchez AL, Sanchez NE, Sanchez AMG. Climatic phenomenon and meteorological variables influencing the dengue fever incidence in Colombian South Pacific region: Modeling study. Ann Trop Med Public Health. 2017;10(6):1489–95. https://doi.org/10.4103/atmph.Atmph_395_17.

    CrossRef  Google Scholar 

  134. Schmidt WP, Suzuki M, Thiem VD, White RG, Tsuzuki A, Yoshida LM, et al. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis. PLoS Med. 2011;8(8):e1001082. https://doi.org/10.1371/journal.pmed.1001082.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  135. Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD. Blood-feeding patterns of Aedes-aegypti (Diptera, Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30(5):922–7. https://doi.org/10.1093/jmedent/30.5.922.

    CAS  CrossRef  PubMed  Google Scholar 

  136. Scott TW, Morrison AC. Aedes aegypti density and the risk of dengue-virus transmission. In: Takken W, Scott TW, editors. Ecological aspects for application of genetically modified mosquitoes. Dordrecht: Kluwer Academic Publishers; 2003.

    Google Scholar 

  137. Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28(3):114–21. https://doi.org/10.1016/j.pt.2012.01.001.

    CrossRef  PubMed  Google Scholar 

  138. Semenza JC, Sudre B, Miniota J, Rossi M, Hu W, Kossowsky D, et al. International dispersal of dengue through air travel: importation risk for Europe. PLoS Negl Trop Dis. 2014;8(12):e3278. https://doi.org/10.1371/journal.pntd.0003278.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  139. Sheppard PM, Macdonald WW, Tonn RJ, Grab B. The dynamics of and adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol. 1969;38:661–702.

    CrossRef  Google Scholar 

  140. Soo KM, Khalid B, Ching SM, Chee HY. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One. 2016;11(5):e0154760. https://doi.org/10.1371/journal.pone.0154760.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  141. Sota T, Mogi M. Interspecific variation in desiccation survival-time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia. 1992;90(3):353–8. https://doi.org/10.1007/bf00317691.

    CAS  CrossRef  PubMed  Google Scholar 

  142. Southwood TR, Murdie G, Yasuno M, Tonn RJ, Reader PM. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ. 1972;46(2):211–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Thammapalo S, Chongsuwiwatwong V, McNeil D, Geater A. The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast Asian J Trop Med Public Health. 2005;36(1):191–6.

    PubMed  Google Scholar 

  144. Thomas SM, Fischer D, Fleischmann S, Bittner T, Beierkuhnlein C. Risk assessment of dengue virus amplification in Europe based on spatio-temporal high resolution climate change projections. Erdkunde. 2011;65(2):137–50. https://doi.org/10.3112/erdkunde.2011.02.03.

    CrossRef  Google Scholar 

  145. Torres JR, Orduna TA, Pina-Pozas M, Vazquez-Vega D, Sarti E. Epidemiological characteristics of dengue disease in Latin America and in the Caribbean: a systematic review of the literature. J Trop Med. 2017;2017:8045435. https://doi.org/10.1155/2017/8045435.

  146. United Nations Department of Economic and Social Affairs Population Division. (2018). World urbanization prospects: the 2018 revision. New York: United Nations.

    Google Scholar 

  147. United Nations Human Settlements Programme. (2003). The challenge of slums: global report on human settlements. Retrieved from.

    Google Scholar 

  148. Vazeille M, Dehecq JS, Failloux AB. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Reunion Island for Zika virus. Med Vet Entomol. 2018;32(2):251–4. https://doi.org/10.1111/mve.12284.

    CAS  CrossRef  PubMed  Google Scholar 

  149. Vincenti-Gonzalez MF, Tami A, Lizarazo EF, Grillet ME. ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela. Sci Rep. 2018;8:11. https://doi.org/10.1038/s41598-018-24003-z.

    CAS  CrossRef  Google Scholar 

  150. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes-aegypti for dengue-2 virus. Am J Trop Med Hyg. 1987;36(1):143–52. https://doi.org/10.4269/ajtmh.1987.36.143.

    CAS  CrossRef  PubMed  Google Scholar 

  151. Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health. 2018;15(2) https://doi.org/10.3390/ijerph15020220.

  152. World Health Organization. Western Pacific regional action plan for dengue prevention and control. Manila: World Health Organization Regional Office for the Western Pacific; 2016.

    Google Scholar 

  153. Williams CR, Mincham G, Faddy H, Viennet E, Ritchie SA, Harley D. Projections of increased and decreased dengue incidence under climate change. Epidemiol Infect. 2016;144(14):3091–100. https://doi.org/10.1017/s095026881600162x.

    CAS  CrossRef  PubMed  Google Scholar 

  154. Woodruff R, Hales S, Butler C, McMichael AJ. Climate change and health impacts in Australia: effects of dramatic CO2 emission reductions. Canberra: Australian National University; 2005.

    Google Scholar 

  155. World Health Organization. Dengue vaccine: WHO position paper, September 2018 – recommendations. Vaccine. 2018; https://doi.org/10.1016/j.vaccine.2018.09.063.

  156. World Health Organization. Dengue and severe dengue. 2019a. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue

  157. World Health Organization. Vector-borne diseases. 2019b. Retrieved from https://www.who.int/mediacentre/factsheets/fs387/en/index2.html

  158. World Health Organization. Yellow fever: fact sheet. 2019c, 7 May 2019. Retrieved from https://www.who.int/news-room/fact-sheets/detail/yellow-fever

  159. Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect. 2009a;137(8):1188–202. https://doi.org/10.1017/s0950268809002040.

    CAS  CrossRef  PubMed  Google Scholar 

  160. Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV. Assessing the effects of temperature on dengue transmission. Epidemiol Infect. 2009b;137(8):1179–87. https://doi.org/10.1017/s0950268809002052.

    CAS  CrossRef  PubMed  Google Scholar 

  161. Yasuno M, Tonn RJ. Study of biting habits of aedes-aegypti in Bangkok-Thailand. Bull World Health Organ. 1970;43(2):319. Retrieved from <Go to ISI>://WOS:A1970H927900012.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zahouli JBZ, Koudou BG, Muller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern cote d’Ivoire. PLoS Negl Trop Dis. 2017;11(7):e0005751. https://doi.org/10.1371/journal.pntd.0005751.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  163. Zayed A, Awash AA, Esmail MA, Al-Mohamadi HA, Al-Salwai M, Al-Jasari A, et al. Detection of chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen. Acta Trop. 2012;123(1):62–6. https://doi.org/10.1016/j.actatropica.2012.03.004.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Cromar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cromar, L., Cromar, K. (2021). Dengue Fever and Climate Change. In: Pinkerton, K.E., Rom, W.N. (eds) Climate Change and Global Public Health. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54746-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54746-2_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54745-5

  • Online ISBN: 978-3-030-54746-2

  • eBook Packages: MedicineMedicine (R0)