Skip to main content

Role of Membranes in Wastewater Treatment

  • Chapter
  • First Online:
Water Pollution and Remediation: Photocatalysis

Abstract

Demand for water is on the rise as population and human activities increase including industries and agriculture. Freshwater resources have a skewed distribution besides being inadequate to meet the demands. Even though actual water consumed by humans and their activities is much less, large quantum of water is used for peripheral activities and discharged into the environment as wastewater. Hence, to meet the demand for water and to protect the environment, wastewater treatment is necessary. Conventional methods of treatment are cumbersome requiring large footprints, use of chemicals, and subsequent management of sludge generated.

Membrane is a barrier which helps in the preferential transport of some species under a potential gradient, be it mechanical, chemical, or electrical. Membranes can be made from different materials, in different forms, and with different morphologies. Membranes can be porous or nonporous, charged or neutral, and solid or liquid. Because of its flexibility, a variety of membrane processes has been developed and is being used to mitigate many industrial challenges. Membrane processes used in wastewater treatment are ambient temperature processes with no phase change and are rate-governed. The chemical requirements are significantly less compared to conventional processes leading to less sludge production.

An overview of different membrane processes motivated by pressure, concentration, and thermal and electrical gradients is discussed in the context of mitigating water stress situations. The technologies discussed include desalination, water recovery, and recycle and removal of toxic contaminants from wastewater streams including the latest developments in application areas. Utility of membrane contactors in improving the performance of the conventional separation processes is highlighted through membrane solvent extraction, supported liquid membranes, and membrane bioreactors. The potential applications of forward osmosis in water treatment are also indicated. The roles of electrically driven membrane processes such as electrodialysis, bipolar membrane-based electrodialysis, electrodialysis reversal, and electro-deionization in water treatment are explained along with its limitations and challenges. The role of membranes in providing safe drinking water at the point of use has also been highlighted.

The prospects of combining two or more membrane processes like nanofiltration, reverse osmosis, and electrodialysis in water and wastewater treatment are highlighted. With increasing environmental consciousness and the need to recover value from waste, the concept of decentralization of wastewater treatment is proposed wherein the source of waste is isolated, as membrane processes can operate on any scale.

In the future, environmental protection is going to become a critical concern, and the best strategy is to recover everything in the wastewater stream as value toward realizing the concept of “Waste is unutilized Wealth.” The best way to achieve this is by isolating the individual wastewater streams as produced and treating them at the source without mixing with other waste streams. In this context, membrane processes have varieties and are economically viable for different capacities. Since the various streams are isolated, both the product and retentate streams can be recycled, thus leading not only to recovering value but also zero discharge to the environment. This chapter aims at providing necessary background knowledge to select a suitable scheme for the treatment of the specific wastewater including point-of-use devices and value recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, A., Balasubramanian, S., Kavitha, E., Poonguzhali, E., Prabhakar, S. (2021). Role of Membranes in Wastewater Treatment. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. (eds) Water Pollution and Remediation: Photocatalysis. Environmental Chemistry for a Sustainable World, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-54723-3_8

Download citation

Publish with us

Policies and ethics