Skip to main content

Photocatalytic Degradation of Azo Dyes in Water

  • Chapter
  • First Online:
Water Pollution and Remediation: Photocatalysis

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 57))

Abstract

Photocatalysis is an emerging method toward wastewater treatment as it needs just an appropriate amount of photocatalyst and renewable solar energy. Water pollution due to continuous dispense of hazardous industrial effluents into the water badly damages the quality of water and poses an utmost threat to the environment. Degrading industrial pollutant into non-toxic compounds by advanced oxidation method has attracted the scientific community. Degradation of a nonbiodegradable azo dyes used in textile, printing, leather, and food industries, by heterogeneous photocatalysis is utmost needed. By the virtue of excellent optical, electronic, efficient light harvesting, tunable photoluminescence, and upconversion property of carbonaceous material, its usage as photocatalytic material is more advantageous. Carbon material displayed extensive application in various fields like drug delivery, photocatalysis, optoelectronics devices, and photovoltaic.

We reviewed various binary, ternary, coupled, and carbon-supported photocatalytic systems for the removal of azo dye, as well as other reported systems adopted for azo dye removal. This book chapter concisely comprises the basic mechanism of photocatalysis, disadvantages of conventional methods of water purification, and general classification of azo dyes. Significantly, immobilizing bare metal oxide nanoparticles on the surface of certain carbonaceous support will stabilized the nanoparticles and prevent leaching of nanoparticles into the water bodies and also slow the electron–hole pair recombination. Also, the band edge position of two combining semiconductors is an important aspect for the fabrication of visible light-driven photocatalyst. The fabricated heterojunction may also utilized the special phenomena of upconversion where, the light of longer wavelength emits the light of shorter wavelength which is useful for wide band gap semiconductor to be utilized as photocatalyst. Lastly, conclusion and future perspective which opens up the area for further research to be carried out for constructing photocatalytic system that can be widely applied for various pollutants were considered and hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shandilya, P., Raizada, P., Singh, P. (2021). Photocatalytic Degradation of Azo Dyes in Water. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. (eds) Water Pollution and Remediation: Photocatalysis. Environmental Chemistry for a Sustainable World, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-54723-3_4

Download citation

Publish with us

Policies and ethics