Skip to main content

Part of the book series: Springer Aerospace Technology ((SAT))

  • 1897 Accesses

Abstract

Tanks containing liquid propellants for rocket engines can be considered as shells whose thin walls are surfaces of revolution. Such surfaces result from a plane curve which rotates about some straight line lying in the plane which contains the curve. The structural analysis of tanks is presented here by using Roarkā€™s formulas for stress and strain. Loads due to propellant sloshing and slosh-suppression devices are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous, Space Shuttle, NASA SP-407. https://history.nasa.gov/SP-407/p38.htm

  2. FlĆ¼gge W, Sobel LH (1965) Stability of shells of revolution: general theory and application to the torus. Ph.D. Dissertation, Mar 1965, 138 pp. https://apps.dtic.mil/dtic/tr/fulltext/u2/617197.pdf

  3. Young WC, Budynas RG (2002) Roarkā€™s formulas for stress and strain, 7th edn. McGraw-Hill, New York. ISBN 0-07-072542-X

    Google ScholarĀ 

  4. FlĆ¼gge W (1960) Stresses in shells. Springer, Berlin

    BookĀ  Google ScholarĀ 

  5. The Engineering Toolbox, Youngā€™s modulusā€”tensile and yield strength for common materials. https://www.engineeringtoolbox.com/young-modulus-d_417.html

  6. Abramson HN (ed) (1966) The dynamic behaviour of liquids in moving containers with application to space vehicle technology, Southwest Research Institute, NASA SP-106, 464 pp, Jan 1966. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670006555.pdf

  7. Abramson HN (1969) Slosh suppression, NASA SP-8031, 36 pp, May 1969. http://everyspec.com/NASA/NASA-SP-PUBS/NASA-SP-8031_20669/

  8. Dodge FT (2000) The new ā€œDynamic behaviour of liquids in moving containersā€. Southwest Research Institute, 202 pp. ftp://apollo.ssl.berkeley.edu/pub/ME_Archives/Government%20and%20Industry%20Standards/NASA%20Documents/SwRI_Fuel_Slosh_Update.pdf

  9. Abramson HN, Bhuta PG, Hutton RE, Stephens DG (1968) Propellant slosh loads, NASA SP-8009, 32 pp, Aug 1968. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690005221.pdf

  10. PĆ©rez JG, Parks RA, Lazor DR (2012) Validation of slosh model parameters and anti-slosh baffle designs of propellant tanks by using slosh testing, NASA, 27th Aerospace testing seminar, Oct 2012. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130000590.pdf

  11. Lomen DO (1965) Liquid propellant sloshing in mobile tanks of arbitrary shape, NASA CR-222, NASA Langley Research Centre, 72 pp, Apr 1965. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650012759.pdf

  12. Fries N, Behruzi P, Arndt T, Winter M, Netter G, Renner U (2012) Modelling of fluid motion in spacecraft propellant tanksā€”sloshing. In: Space propulsion 2012 conference, 7thā€“10th May 2012, Bordeaux, France, 11 pp. https://www.flow3d.de/fileadmin/download_publikationen/modelling-fluid-motion-in-spacecraft-propellant-tanks-sloshing-2012.pdf

  13. Stephens DG, Leonard HW, Perry TW Jr (1962) Investigation of the damping of liquids in right-circular cylindrical tanks, including the effects of a time-variant liquid depth, NASA TN D-1367, July 1962, 32 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19620004069.pdf

  14. Hopfinger EJ, Baumbach V (2009) Liquid sloshing in cylindrical fuel tanks. Progr Propul Phys 1:279ā€“292. https://www.eucass-proceedings.eu/articles/eucass/pdf/2009/01/eucass1p279.pdf

  15. Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stan 60(5):423ā€“440, Research Paper 2857. https://nvlpubs.nist.gov/nistpubs/jres/60/jresv60n5p423_A1b.pdf

  16. Miles JW (1958) Ring damping of free surface oscillations in a circular tank. J Appl Mech 25(2):274ā€“276

    MATHĀ  Google ScholarĀ 

  17. Bauer HF (1960) Theory of the fluid oscillations in a circular cylindrical ring tank partially filled with liquid, NASA TN D-557, 124 pp

    Google ScholarĀ 

  18. Sumner IE (1964) Experimental investigation of slosh-suppression effectiveness of annular-ring baffles in spherical tanks, NASA TN D-2519, 22 pp, Nov 1964. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650001203.pdf

  19. Stephens DG, Leonard HW, Silveira MA (1961) An experimental investigation of the damping of liquid oscillations in an oblate spheroidal tank with and without baffles, NASA TN D-808, 28 pp, June 1961. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990017908.pdf

  20. Stephens DG, Scholl HF (1967) Effectiveness of flexible and rigid ring baffles for damping liquid oscillations in large-scale cylindrical tanks, NASA TN D-3878, Mar 1967, 34 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670010559.pdf

  21. Anonymous, Saturn V Flight Manual SA-503, NASA-TM-X-72151, MSFC-MAN-503, Nov 1968, 243 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750063889.pdf

  22. Wagner WA, Keller RB Jr (ed) (1974) Liquid rocket metal tanks and tank components, NASA SP-8088, 165 pp, May 1974. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750004950.pdf

  23. Roberts JR, Basurto ER, Chen PY (1966) Slosh design handbook I, NASA CR-406, 328 pp, May 1966. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660014177.pdf

  24. Stofan AJ, Sumner IE (1963) Experimental investigation on the slosh damping effectiveness of positive-expulsion bags and diaphragms in spherical tanks, NASA TN D-1712, 22 pp, June 1963. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630006725.pdf

  25. MIL-HDBK-5J: Metallic materials and elements for aerospace vehicle structures, 31 Jan 2003. http://everyspec.com/MIL-HDBK/MIL-HDBK-0001-0099/MIL_HDBK_5J_139/

  26. Hood DW, Eichenberger TW, Lovell DT (1968) An investigation of the generation and utilisation of engineering data on weldments, The Boeing Company, Technical Report AFML-TR-68-268, Oct 1968. https://apps.dtic.mil/dtic/tr/fulltext/u2/851938.pdf

  27. von Mises R (1913) Mechanik der festen Kƶrper im plastisch- deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Gƶttingen, Mathematisch-Physikalische Klasse, vol 1913, pp 582ā€“592. http://eudml.org/doc/58894

  28. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc A 193(1033):281ā€“297. https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1948.0045

  29. Meuwissen MHH (1995) Yield criteria for anisotropic elasto-plastic materials. Eindhoven University of Technology, 24 pp. https://pure.tue.nl/ws/portalfiles/portal/4299264/653055.pdf

  30. Whitfield HK, Keller RB Jr (eds) (1970) Solid rocket motor metal cases, NASA SP-8025, Apr 1970, 110 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700020430.pdf

  31. Gerds AF, Strohecker DE, Byrer TG, Boulger FW (1966) Deformation processing of titanium and its alloys, NASA TM X-53438, Apr 1966. https://ia601209.us.archive.org/13/items/NASA_NTRS_Archive_19660016988/NASA_NTRS_Archive_19660016988.pdf

  32. Strohecker DE, Gerds AF, Henning AF, Boulger FW (1966) Deformation processing of stainless steel, NASA TM X-53569. https://ia800308.us.archive.org/22/items/nasa_techdoc_19670022702/19670022702.pdf

  33. Slunder CJ, Hoenie AF, Hall AM (1967) Thermal and mechanical treatment for precipitation-hardening stainless steel, NASA SP-5089, Jan 1967, 207 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680010964.pdf

  34. Corbett J (2017) Welding, NASA, 7 Aug 2017. https://www.nasa.gov/centers/wstf/supporting_capabilities/machining_and_fabrication/welding.html

  35. Carter B (2013) Introduction to friction stir welding (FSW), NASA, Glenn Research Centre, Advanced Metallics Branch, 8 May 2013, 25 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150009520.pdf

  36. Anonymous, Space Shuttle Technology Summary, Friction Sir Welding, NASA Marshall Space Flight Centre, FS-2001-03-60-MSFC. https://www.nasa.gov/centers/marshall/pdf/104835main_friction.pdf

  37. Anonymous, A Bonding Experience: NASA Strengthens Welds, NASA. https://www.nasa.gov/topics/nasalife/friction_stir.html

  38. Brown BF (1970) Stress-corrosion cracking: a perspective review of the problem, NRL Report 7130, Naval Research Laboratory, Washington, D.C., 24 pp, 16 June 1970. https://apps.dtic.mil/dtic/tr/fulltext/u2/711589.pdf

  39. MIL-HDBK-729: Corrosion and corrosion prevention metals, 21 Nov 1983, 251 pp. http://everyspec.com/MIL-HDBK/MIL-HDBK-0700-0799/MIL_HDBK_729_1946/

  40. McDanels S (2018) Forms of corrosion, galvanic corrosion, NASA, Corrosion Engineering Laboratory, J. F. Kennedy Space Centre, 7 Nov 2018. https://corrosion.ksc.nasa.gov/Corrosion/FormsOf#Galvanic%20Corrosion

  41. DOE-HDBK-1015/1-93, DOE Fundamentals handbookā€”chemistry, vol 1 of 2, FSC-6910, U.S. Department of Energy, Jan 1993. https://www.isibang.ac.in/~library/onlinerz/resources/chem-v1.pdf

  42. MIL-STD-889C (2016) Dissimilar metals, 22 Aug 2016. http://everyspec.com/MIL-STD/MIL-STD-0800-0899/MIL-STD-889C_55344/

  43. Cataldo CE (1968) Compatibility of metals with hydrogen, NASA TM X-53807, 26 Dec 1968, 26 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690009664.pdf

  44. Caskey GR Jr (1983) Hydrogen compatibility handbook for stainless steels, U.S. Department of Energy, Office of Scientific and Technical Information, June 1983. https://www.osti.gov/servlets/purl/5906050

  45. San Marchi C, Somerday BP (2012) Technical reference for hydrogen compatibility of materials, Sandia Report SAND2012-7321, Sept 2012. https://www.sandia.gov/matlsTechRef/chapters/SAND2012_7321.pdf

  46. Chandler DL (2019) Observing hydrogen effects in metal, MIT News, Massachusetts Institute of Technology, 4 Feb 2019. http://news.mit.edu/2019/observing-hydrogens-effects-metal-0205

  47. Tiffany CF (1970) Fracture control of metallic pressure vessels, Technical Report NASA SP-8040, 65 pp, May 1970. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710004655.pdf

  48. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, United States Department of Commerce, Dec 1972. http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf

  49. McDonnell Douglas, Isogrid design handbook, NASA-CR-124075, Feb 1973, 222 pp. https://femci.gsfc.nasa.gov/isogrid/NASA-CR-124075_Isogrid_Design.pdf

  50. Garber S (1959) Structures and materials. In: Space handbook: Astronautics and its applications, , Staff report of the select committee on astronautics and space exploration, United States, Government printing office, Washington. https://www.history.nasa.gov/conghand/structur.htm

  51. Knighton DJ (1972) Delta launch vehicle isogrid structure NASTRAN analysis, NASA, Conference paper, Sept 1972, 23 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720025227.pdf

  52. Anonymous, Skylab Saturn IB flight manual, NASA TM-X 70137, NASA, George C. Marshall Space Flight Centre, 30 Sept 1972, 273 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021163.pdf

  53. NASA. https://science.ksc.nasa.gov/shuttle/technology/images/et-lox_1.jpg

  54. Joyce P, Sandwich structures, United States Naval Academy. https://www.usna.edu/Users/mecheng/pjoyce/composites/Short_Course_2003/13_PAX_Short_Course_Sandwich-Constructions.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro de Iaco Veris .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Iaco Veris, A. (2021). Tanks for Propellants. In: Fundamental Concepts of Liquid-Propellant Rocket Engines. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-54704-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54704-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54703-5

  • Online ISBN: 978-3-030-54704-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics