Skip to main content

Antibody Validation

  • Chapter
  • First Online:
Introduction to Antibody Engineering

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1881 Accesses

Abstract

In contrast with antibodies intended for use in therapy and diagnostics, the precise characterization of most antibody-based reagents for research purposes has long remained unattended. In the last decades, the urge for unifying the reporting standards has often been expressed by the scientific community, in a joint effort to increase the reproducibility of experiments involving such compounds. By now, their characterization, including their unambiguous identification, the description of their target, their biological and biophysical properties such as antigen affinity, cross-reactivity, and stability, as well as their formulation for optimal performance, has been recognized as an essential prerequisite for their use in the academic and industry setting. The task of unifying the prerequisites for their quality control has been the central effort of acknowledged scientific quorums such as the authors of MIAPAR proposal, EuroMabNet, IWGAV, and the contributors to Asilomar meeting. Rigorous testing of antibody performance has been systematically performed within the scope of the Human Protein Atlas Project. This increasing base of knowledge is efficiently supported by the open-science databases, where the end users can contribute to the application-specific portfolio of diagnostic reagents, adding also to the development of specialized experimental protocols connected with their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–9.

    Article  CAS  Google Scholar 

  2. Taussig MJ, Fonseca C, Trimmer JS. Antibody validation: a view from the mountains. New Biotechnol. 2018;45:1–8.

    Article  CAS  Google Scholar 

  3. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  Google Scholar 

  4. Ruberti F, Cattaneo A, Bradbury A. The use of the RACE method to clone hybridoma cDNA when V region primers fail. J Immunol Methods. 1994;173(1):33–9.

    Article  CAS  Google Scholar 

  5. Zack DJ, Wong AL, Stempniak M, Weisbart RH. Two kappa immunoglobulin light chains are secreted by an anti-DNA hybridoma: implications for isotypic exclusion. Mol Immunol. 1995;32(17–18):1345–53.

    Article  CAS  Google Scholar 

  6. Blatt NB, Bill RM, Glick GD. Characterization of a unique anti-DNA hybridoma. Hybridoma. 1998;17(1):33–40.

    Article  CAS  Google Scholar 

  7. Slaastad H, Wu W, Goullart L, Kanderova V, Tjønnfjord G, Stuchly J, et al. Multiplexed immuno-precipitation with 1725 commercially available antibodies to cellular proteins. Proteomics. 2011;11(23):4578–82.

    Article  CAS  Google Scholar 

  8. Blow N. Antibodies: the generation game. Nature. 2007;447(7145):741–4.

    Article  CAS  Google Scholar 

  9. Berglund L, Björling E, Jonasson K, Rockberg J, Fagerberg L, Szigyarto CAK, et al. A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation. Proteomics. 2008;8(14):2832–9.

    Article  CAS  Google Scholar 

  10. Bordeaux J, Welsh AW, Agarwal S, Killiam E, Baquero MT, Hanna JA, et al. Antibody validation. BioTechniques. 2010;48(3):197–209.

    Article  CAS  Google Scholar 

  11. Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 2009;57(1):1–5.

    Article  CAS  Google Scholar 

  12. Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol. 2005;23(10):1257–68.

    Article  CAS  Google Scholar 

  13. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron. 2016;78:315–20.

    Article  CAS  Google Scholar 

  14. Kraemer S, Vaught JD, Bock C, Gold L, Katilius E, Keeney TR, et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One. 2011;6(10):e26332.

    Article  CAS  Google Scholar 

  15. Bradbury ARM, Plückthun A. Getting to reproducible antibodies: the rationale for sequenced recombinant characterized reagents. Protein Eng Des Sel. 2015;28(10):303–5.

    Article  CAS  Google Scholar 

  16. Albert WHW. The antibody/antiserum as an analytical reagent in quantitative immunoassays. Scand J Clin Lab Invest. 1991;51(S205):79–85.

    Article  Google Scholar 

  17. Ascoli CA, Aggeler B. Overlooked benefits of using polyclonal antibodies. BioTechniques. 2018;65(3):127–36.

    Article  CAS  Google Scholar 

  18. Cox KL, Devanarayan V, Kriauciunas A, Manetta J, Montrose C, Sittampalam S. Immunoassay methods. Assay guidance manual; 2004.

    Google Scholar 

  19. Voskuil JLA. Commercial antibodies and their validation. F1000Res. 2014;3:232.

    Article  Google Scholar 

  20. Corti D, Kearns JD. Promises and pitfalls for recombinant oligoclonal antibodies-based therapeutics in cancer and infectious disease. Curr Opin Immunol. 2016;40:51–61.

    Article  CAS  Google Scholar 

  21. Ferrara F, D’Angelo S, Gaiotto T, Naranjo L, Tian H, Gräslund S, et al. Recombinant renewable polyclonal antibodies. MAbs. 2015;7(1):32–41.

    Article  CAS  Google Scholar 

  22. Chalmers AD, Helsby MA, Fenn JR. Reporting research antibody use: how to increase experimental reproducibility. F1000Res. 2013;2:153.

    Article  Google Scholar 

  23. Couchman JR. Commercial antibodies: the good, bad, and really ugly. J Histochem Cytochem. 2009;57(1):7–8.

    Article  CAS  Google Scholar 

  24. Kalyuzhny AE. The dark side of the immunohistochemical moon: industry. J Histochem Cytochem. 2009;57(12):1099–101.

    Article  CAS  Google Scholar 

  25. Björling E, Uhlén M. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics. 2008;7(10):2028–37.

    Article  Google Scholar 

  26. Bandrowski A, Brush M, Grethe JS, Haendel MA, Kennedy DN, Hill S, et al. The resource identification initiative: a cultural shift in publishing. Brain Behav. 2016;6(1):1–14.

    Article  Google Scholar 

  27. Bourbeillon J, Orchard S, Benhar I, Borrebaeck C, De Daruvar A, Dübel S, et al. Minimum information about a protein affinity reagent (MIAPAR). Nat Biotechnol. 2010;28(7):650–3.

    Article  CAS  Google Scholar 

  28. Roncador G, Engel P, Maestre L, Anderson AP, Cordell JL, Cragg MS, et al. The European antibody network’s practical guide to finding and validating suitable antibodies for research. MAbs. 2016;8(1):27–36.

    Article  CAS  Google Scholar 

  29. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, et al. A proposal for validation of antibodies. Nat Methods. 2016;13(10):823–7.

    Article  CAS  Google Scholar 

  30. Baker M. Biologists plan scoring system for antibodies. Nature. 2016;

    Google Scholar 

  31. Uhlen M, Ponten F. Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics. 2005;4(4):384–93.

    Article  CAS  Google Scholar 

  32. Edfors F, Hober A, Linderbäck K, Maddalo G, Azimi A, Sivertsson Å, et al. Enhanced validation of antibodies for research applications. Nat Commun. 2018;9(1):4130.

    Article  Google Scholar 

  33. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397–406.

    Article  CAS  Google Scholar 

  34. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The human cell atlas. elife. 2017;6:e27041.

    Article  Google Scholar 

  35. Pontén F, Jirström K, Uhlen M. The human protein atlas – a tool for pathology. J Pathol. 2008;216(4):387–93.

    Article  Google Scholar 

  36. Durinx C, McEntyre J, Appel R, Apweiler R, Barlow M, Blomberg N, et al. Identifying ELIXIR core data resources. F1000Res. 2017;5:ELIXIR-2422.

    Article  Google Scholar 

  37. Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.

    Article  CAS  Google Scholar 

  38. Weller MG. Ten basic rules of antibody validation. Anal Chem Insights. 2018;13:1–5.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Christian Doppler Society (CD Laboratory for innovative Immunotherapeutics), Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Wozniak-Knopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wozniak-Knopp, G. (2021). Antibody Validation. In: Rüker, F., Wozniak-Knopp, G. (eds) Introduction to Antibody Engineering. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54630-4_14

Download citation

Publish with us

Policies and ethics