Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1240))

Abstract

RNA functions depend on its three-dimensional structure formed largely from hydrogen bonds between pairs of nucleotides. RNAs with analogous functions exhibit highly similar structures without showing significant sequence similarity necessarily. Understanding the relationships between the structure and the functions has been considered one of the challenges in biology. In this study, we face the problem of identifying a given structural pattern into an RNA secondary structure with arbitrary pseudoknots. We abstract the shape in terms of secondary structure, formalized by the arc diagram, and we introduce a set of operators necessary and sufficient to describe any arc diagram in terms of relations among loops. For each molecule, we uniquely associate the relation matrix, and we face the aforementioned problem in terms of searching a submatrix. The algorithms work in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Bray, D., Hopkin, K., Johnson, A.D., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology. Garland Science, New York (2013)

    Book  Google Scholar 

  2. Andronescu, M., Bereg, V., Hoos, H.H., Condon, A.: RNA strand: the RNA secondary structure and statistical analysis database. BMC Bioinform. 9(1), 340 (2008)

    Article  Google Scholar 

  3. Arslan, A.N., Anandan, J., Fry, E., Monschke, K., Ganneboina, N., Bowerman, J.: Efficient RNA structure comparison algorithms. J. Bioinform. Comput. Biol. 15(06), 1740009 (2017)

    Article  Google Scholar 

  4. Backofen, R., Siebert, S.: Fast detection of common sequence structure patterns in RNAs. J. Discret. Algorithms 5(2), 212–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blin, G., Crochemore, M., Vialette, S.: Algorithmic Aspects of Arcannotated Sequences. Algorithms in Molecular Biology: Techniques, Approaches, and Applications. Wiley, Hoboken (2011)

    Google Scholar 

  6. Blin, G., Fertin, G., Herry, G., Vialette, S.: Comparing RNA structures: towards an intermediate model between the edit and the Lapcs problems. In: Brazilian Symposium on Bioinformatics, pp. 101–112. Springer (2007)

    Google Scholar 

  7. Blin, G., Fertin, G., Rizzi, R., Vialette, S.: What makes the arc-preserving subsequence problem hard? In: Transactions on Computational Systems Biology II, pp. 1–36. Springer (2005)

    Google Scholar 

  8. Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly, B.T., Ramakrishnan, V.: Functional insights from the structure of the 30s ribosomal subunit and its interactions with antibiotics. Nature 407(6802), 340–348 (2000)

    Article  Google Scholar 

  9. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Annual Symposium on Combinatorial Pattern Matching, pp. 270–280. Springer (1999)

    Google Scholar 

  10. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc-annotated sequences. In: International Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 182–193. Springer (2002)

    Google Scholar 

  11. Hochsmann, M., Toller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proceedings of the 2003 IEEE Bioinformatics Conference on Computational Systems Bioinformatics, CSB2003, pp. 159–168. IEEE (2003)

    Google Scholar 

  12. Höchsmann, M., Voss, B., Giegerich, R.: Pure multiple RNA Secondary structure alignments: a progressive profile approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 1(1), 53–62 (2004)

    Article  Google Scholar 

  13. Li, K., Rahman, R., Gupta, A., Siddavatam, P., Gribskov, M.: Pattern matching in RNA structures. In: Proceedings of the 4th International Conference on Bioinformatics Research and Applications, ISBRA 2008, pp. 317–330. Springer-Verlag (2008)

    Google Scholar 

  14. Mauri, G., Pavesi, G.: Algorithms for pattern matching and discovery in RNA secondary structure. Theor. Comput. Sci. 335(1), 29–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Quadrini, M., Culmone, R., Merelli, E.: Topological classification of structures via intersection graph. In: Theory and Practice of Natural Computing, TPNC 2017 (2017)

    Google Scholar 

  16. Quadrini, M.: RNA relation pattern (2020). https://github.com/michelaquadrini/RNARelationPattern. Accessed 27 Mar 2020

  17. Quadrini, M., Merelli, E.: Loop-loop interaction metrics on RNA secondary structures with pseudoknots. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOINFORMATICS, vol. 4, pp. 29–37. SciTePress, Setúbal (2018)

    Google Scholar 

  18. Quadrini, M., Merelli, E., Piergallini, R.: Loop grammars to identify RNA structural patterns. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOINFORMATICS, vol. 3, pp. 302–309. SciTePress (2019)

    Google Scholar 

  19. Quadrini, M., Tesei, L., Merelli, E.: An algebraic language for RNA pseudoknots comparison. BMC Bioinform. 20(4), 161 (2019)

    Article  Google Scholar 

  20. Wang, J.T.L., Shapiro, B.A., Shasha, D., Zhang, K., Currey, K.M.: An algorithm for finding the largest approximately common substructures of two trees. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 889–895 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Quadrini .

Editor information

Editors and Affiliations

A Appendix

A Appendix

In this Appendix, we define the pseudocode of the two algorithm mentioned in the paper, Relation Matrix and Determination of the Relation Matrix Algorithms.

figure a
figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quadrini, M. (2021). Searching RNA Substructures with Arbitrary Pseudoknots. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_13

Download citation

Publish with us

Policies and ethics