Skip to main content

Towards A More Effective Bidirectional LSTM-Based Learning Model for Human-Bacterium Protein-Protein Interactions

  • Conference paper
  • First Online:
Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020) (PACBB 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1240))

Abstract

The identification of protein-protein interaction (PPI) is one of the most important tasks to understand the biological functions and disease mechanisms. Although numerous databases of biological interactions have been published in debt to advanced high-throughput technology, the study of inter-species protein-protein interactions, especially between human and bacterium pathogens, remains an active yet challenging topic to harness computational models tackling the complex analysis and prediction tasks. In this paper, we comprehensively revisit the prediction task of human-bacterium protein-protein interactions (HB-PPI), which is a first ever endeavour to report an empirical evaluation in learning and predicting HB-PPI based on machine learning models. Firstly, we summarise the literature review of human-bacterium interaction (HBI) study, meanwhile a vast number of databases published in the last decades are carefully examined. Secondly, a broader and deeper experimental framework is designed for HB-PPI prediction task, which explores a variety of feature representation algorithms and different computational models to learn from the curated HB-PPI dataset and perform predictions. Furthermore, a bidirectional LSTM-based model is proposed for the prediction task, which demonstrates a more effective performance in comparison with the others. Finally, opportunities for improving the performance and robustness of machine learning models for HP-PPI prediction are also discussed, laying a foundation for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code and data are available on: https://huaming-chen.com/Bi-LSTM-Predictor/.

References

  1. Ahmed, H.R., et al.: Pattern discovery in protein networks reveals high-confidence predictions of novel interactions. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2938–2945 (2014)

    Google Scholar 

  2. Ammari, M.G., et al.: Hpidb 2.0: a curated database for host–pathogen interactions. Database 2016 (2016)

    Google Scholar 

  3. Ben-Hur, A., et al.: Kernel methods for predicting protein–protein interactions. Bioinformatics 21(suppl\_1), i38–i46 (2005)

    Google Scholar 

  4. Breuer, K., et al.: Innatedb: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 41(D1), D1228–D1233 (2013)

    Article  Google Scholar 

  5. Calderone, A., et al.: Mentha: a resource for browsing integrated protein-interaction networks. Nat. Meth. 10(8), 690–691 (2013)

    Article  Google Scholar 

  6. Chatr-Aryamontri, A., et al.: The biogrid interaction database: 2017 update. Nucleic Acids Res. 45(D1), D369–D379 (2017)

    Article  Google Scholar 

  7. Chou, K.C., et al.: Memtype-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through PSE-PSSM. Biochem. Biophys. Res. Commun. 360(2), 339–345 (2007)

    Article  Google Scholar 

  8. Consortium, U., et al.: Uniprot: the universal protein knowledgebase. Nucleic Acids Res. 46(5), 2699 (2018)

    Google Scholar 

  9. Cui, G., et al.: Prediction of protein-protein interactions between viruses and human by an SVM model. In: BMC bioinformatics. vol. 13, p. S5. Springer (2012)

    Google Scholar 

  10. DurmuÅŸ, S., et al.: A review on computational systems biology of pathogen-host interactions. Front. Microbiol. 6, 235 (2015)

    Google Scholar 

  11. Durmuş Tekir, S., et al.: Phisto: pathogen-host interaction search tool. Bioinformatics 29(10), 1357–1358 (2013)

    Article  Google Scholar 

  12. Durmus Tekir, S., et al.: Infection strategies of bacterial and viral pathogens through pathogen–human protein–protein interactions. Front. Microbiol. 3, 46 (2012)

    Google Scholar 

  13. Dyer, M.D., et al.: Supervised learning and prediction of physical interactions between human and hiv proteins. Infect. Genet. Evolut. 11(5), 917–923 (2011)

    Article  Google Scholar 

  14. Eid, F.E., et al.: Denovo: virus-host sequence-based protein-protein interaction prediction. Bioinformatics 32(8), 1144–1150 (2016)

    Article  Google Scholar 

  15. Emamjomeh, A., et al.: Predicting protein-protein interactions between human and hepatitis c virus via an ensemble learning method. Molecular Biosyst. 10(12), 3147–3154 (2014)

    Article  Google Scholar 

  16. Gomez, S.M., et al.: Learning to predict protein-protein interactions from protein sequences. Bioinformatics 19(15), 1875–1881 (2003)

    Article  Google Scholar 

  17. Guo, Y., et al.: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res. 36(9), 3025–3030 (2008)

    Article  Google Scholar 

  18. Hochreiter, S., et al.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Cheol Jeong, J., et al.: On position-specific scoring matrix for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 308–315 (2010)

    Article  Google Scholar 

  20. Joshi-Tope, G., et al.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33(suppl\_1), D428–D432 (2005)

    Google Scholar 

  21. Kerrien, S., et al.: The intact molecular interaction database in 2012. Nucleic Acids Res. 40(D1), D841–D846 (2012)

    Article  Google Scholar 

  22. König, R., et al.: Global analysis of host-pathogen interactions that regulate early-stage hiv-1 replication. Cell 135(1), 49–60 (2008)

    Article  Google Scholar 

  23. Kshirsagar, M., et al.: Multitask learning for host-pathogen protein interactions. Bioinformatics 29(13), i217–i226 (2013)

    Article  Google Scholar 

  24. Licata, L., et al.: Mint, the molecular interaction database: 2012 update. Nucleic Acids Res. 40(D1), D857–D861 (2012)

    Article  Google Scholar 

  25. Lin, T.Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  26. Nanni, L., et al.: An empirical study of different approaches for protein classification. The Scientific World Journal 2014 (2014)

    Google Scholar 

  27. Nourani, E., et al.: Computational approaches for prediction of pathogen-host protein-protein interactions. Front. Microbiol. 6, 94 (2015)

    Article  Google Scholar 

  28. Prieto, C., et al.: Apid: agile protein interaction dataanalyzer. Nucleic Acids Res. 34(suppl\_2), W298–W302 (2006)

    Google Scholar 

  29. Salwinski, L., et al.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32(suppl\_1), D449–D451 (2004)

    Google Scholar 

  30. Schuster, M., et al.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  31. Sen, R., et al.: A review on host-pathogen interactions: classification and prediction. Euro. J. Clin. Microbiol. Infect. Dis. 35(10), 1581–1599 (2016)

    Article  Google Scholar 

  32. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information. PNAS 104(11), 4337–4341 (2007)

    Article  Google Scholar 

  33. Soyemi, J., et al.: Inter-species/host-parasite protein interaction predictions reviewed. Curr. Bioinform. 13(4), 396–406 (2018)

    Article  Google Scholar 

  34. Wang, X., et al.: A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences. PLoS One 14(6), e0217312 (2019)

    Article  Google Scholar 

  35. Wattam, A.R., et al.: Patric, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42(D1), D581–D591 (2014)

    Article  Google Scholar 

  36. Wu, J., et al.: Towards a general prediction system for the primary delay in urban railways. In: 2019 IEEE ITSC, pp. 3482–3487. IEEE (2019)

    Google Scholar 

  37. Wuchty, S.: Computational prediction of host-parasite protein interactions between p. falciparum and h. sapiens. PLoS One 6(11), e26960 (2011)

    Article  Google Scholar 

  38. Yao, Y., et al.: Bi-directional LSTM recurrent neural network for chinese word segmentation. In: ICONIP, pp. 345–353. Springer (2016)

    Google Scholar 

  39. Zhang, J., et al.: Review and comparative assessment of sequence-based predictors of protein-binding residues. Brief. Bioinform. 19(5), 821–837 (2018)

    Article  Google Scholar 

  40. Zhang, L.: Sequence-based prediction of protein-protein interactions using random tree and genetic algorithm. In: ICIC, pp. 334–341. Springer (2012)

    Google Scholar 

  41. Zhou, H., et al.: Progress in computational studies of host-pathogen interactions. J. Bioinform. Comput. Biol. 11(02), 1230001 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Shen, J., Wang, L., Jin, Y. (2021). Towards A More Effective Bidirectional LSTM-Based Learning Model for Human-Bacterium Protein-Protein Interactions. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_10

Download citation

Publish with us

Policies and ethics