Skip to main content

Spinal Cord Injury and Epidural Spinal Cord Stimulation

  • Chapter
  • First Online:
Modern Approaches to Augmentation of Brain Function

Abstract

After SCI, deficits of motor, sensory, and autonomic functions are commensurate with injury severity and level (Jaja et al. 2019; Failli et al. 2012). Advances in clinical care have reduced morbidities, increased survival, and improved neurological recovery after SCI (Freed et al. 1966; Stauffer 1975; Closson et al. 1991; Badhiwala et al. 2021). These advances have shifted the focus from complication management to improved life quality and independence with increasingly greater emphasis on recovery. For this review, by recovery, we specifically mean a measurable enduring improvement linked to improved spinal cord circuit function. This review does not focus on technological substitution of function using bypass technology such as a brain-machine interface, as covered in other chapters. Rather, we wish to discuss methods by which additional function can be obtained from limited residual connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MM, Hicks AL (2005) Spasticity after spinal cord injury. Spinal Cord 43(10):577–586

    Article  CAS  PubMed  Google Scholar 

  • Aimetti AA et al (2019) Natural history of neurological improvement following complete (AIS A) thoracic spinal cord injury across three registries to guide acute clinical trial design and interpretation. Spinal Cord 57(9):753–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Angeli CA et al (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslan SC et al (2018) Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol 9:565

    Article  PubMed  PubMed Central  Google Scholar 

  • Badhiwala JH et al (2021) The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol 20(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Baker SN, Perez MA (2017) Reticulospinal contributions to gross hand function after human spinal cord injury. J Neurosci 37(40):9778–9784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bareyre FM et al (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Behrman AL, Bowden MG, Nair PM (2006) Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther 86(10):1406–1425

    Article  PubMed  Google Scholar 

  • Behrman AL, Ardolino EM, Harkema SJ (2017) Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury. J Neurol Phys Ther 41(Suppl 3):S39–S45

    Article  PubMed  PubMed Central  Google Scholar 

  • Belanger M et al (2000) Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81(8):1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Brown JO, McCouch GP (1947) Abortive regeneration of the transected spinal cord. J Comp Neurol 87(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Bui TV et al (2016) Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. eLife 5:e21715

    Article  PubMed  PubMed Central  Google Scholar 

  • Bussel B et al (1988) Myoclonus in a patient with spinal cord transection: possible involvement of the spinal stepping generator. Brain 111(5):1235–1245

    Article  PubMed  Google Scholar 

  • Calancie B (1991) Interlimb reflexes following cervical spinal cord injury in man. Exp Brain Res 85(2):458–469

    Article  CAS  PubMed  Google Scholar 

  • Calancie B (2006) Spinal myoclonus after spinal cord injury. J Spinal Cord Med 29(4):413–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Calancie B et al (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117(Pt 5):1143–1159

    Article  PubMed  Google Scholar 

  • Calancie B, Lutton S, Broton JG (1996) Central nervous system plasticity after spinal cord injury in man: interlimb reflexes and the influence of cutaneous stimulation. Electroencephalogr Clin Neurophysiol 101(4):304–315

    Article  CAS  PubMed  Google Scholar 

  • Calvert JS et al (2019) Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation 22(3):244–252

    Article  PubMed  Google Scholar 

  • Campos RJ et al (1987) Epidural spinal cord stimulation in spastic spinal cord injury patients. Appl Neurophysiol 50(1–6):453–454

    CAS  PubMed  Google Scholar 

  • Cardenas DD et al (2007) Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord 45(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Cardenas DD et al (2014) Two phase 3, multicenter, randomized, placebo-controlled clinical trials of fampridine-SR for treatment of spasticity in chronic spinal cord injury. Spinal Cord 52(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Ceto S et al (2020) Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27(3):430–440.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau C, Barbeau H, Rossignol S (1998) Effects of intrathecal alpha(1)- and alpha(2)-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 79(6):2941–2963

    Article  CAS  PubMed  Google Scholar 

  • Chen MS et al (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439

    Article  CAS  PubMed  Google Scholar 

  • Chen B et al (2018) Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 174(6):1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioni B et al (1986) Voluntary supraspinal suppression of spinal reflex activity in paralyzed muscles of spinal cord injury patients. Exp Neurol 93(3):574–583

    Article  CAS  PubMed  Google Scholar 

  • Closson JB et al (1991) Rehabilitation in spinal cord disorders. 3. Comprehensive management of spinal cord injury. Arch Phys Med Rehabil 72(4-S):S298–S308

    CAS  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  • Courtine G et al (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14(1):69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtine G et al (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12(10):1333–U167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowley KC, Zaporozhets E, Schmidt BJ (2008) Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 586(6):1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crone SA et al (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29(21):7098–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis E et al (2018) A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22(6):941–950.e6

    Article  CAS  PubMed  Google Scholar 

  • Darrow D et al (2019) Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J Neurotrauma 36(15):2325–2336

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leon RD et al (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79(3):1329–1340

    Article  PubMed  Google Scholar 

  • Dietz V, Colombo G, Jensen L (1994) Locomotor activity in spinal man. Lancet 344(8932):1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijević MR (1988) Residual motor functions in spinal cord injury. Adv Neurol 47:138–155

    PubMed  Google Scholar 

  • Dimitrijevic MR et al (1983) Motor control in man after partial or complete spinal cord injury. Adv Neurol 39:915–926

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MR et al (1984) Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann Neurol 16(2):216–221

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic MR et al (1987) Epidural spinal cord stimulation and carry-over effect in chronic spinal cord injury patients. Stereotact Funct Neurosurg 50(1–6):449–450

    Article  CAS  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998a) Evidence for a spinal central pattern generator in humans. In: Kiehn O et al (eds) Neuronal mechanisms for generating locomotor activity. New York Acad Sciences, New York, pp 360–376

    Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998b) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860(1):360–376

    Article  CAS  PubMed  Google Scholar 

  • Dougherty KJ et al (2013) Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80(4):920–933

    Article  CAS  PubMed  Google Scholar 

  • Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15(3):96–103

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC (1976) The plasticity of the mammalian central nervous system with special reference to new growths in response to lesions. Naturwissenschaften 63(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR et al (2001a) Retraining the injured spinal cord. J Physiol 533(1):15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgerton VR, Roy RR, de Leon RD (2001b) Neural Darwinism in the mammalian spinal cord. In: Patterson MM, Grau JW (eds) Spinal cord plasticity: alterations in reflex function. Springer, Boston, MA, pp 185–206

    Chapter  Google Scholar 

  • Edgerton VR et al (2008) Training locomotor networks. Brain Res Rev 57(1):241–254

    Article  PubMed  Google Scholar 

  • Erb DE, Mora RJ, Bunge RP (1993) Reinnervation of adult rat gastrocnemius muscle by embryonic motoneurons transplanted into the axotomized tibial nerve. Exp Neurol 124(2):372–376

    Article  CAS  PubMed  Google Scholar 

  • Failli V et al (2012) Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 135(11):3238–3250

    Article  PubMed  Google Scholar 

  • Fehlings MG et al (2018) Rho inhibitor VX-210 in acute traumatic subaxial cervical spinal cord injury: design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) clinical trial. J Neurotrauma 35(9):1049–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Feigin I, Geller EH, Wolf A (1951) Absence of regeneration in the spinal cord of the young rat. J Neuropathol Exp Neurol 10(4):420–425

    Article  CAS  Google Scholar 

  • Filli L et al (2014) Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. J Neurosci 34(40):13399–13410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn JR et al (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60(5):809–822

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H et al (1980) The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand 108(3):283–295

    Article  CAS  PubMed  Google Scholar 

  • Freed MM, Bakst HJ, Barrie DL (1966) Life expectancy, survival rates, and causes of death in civilian patients with spinal cord trauma. Arch Phys Med Rehabil 47(7):457–463

    CAS  PubMed  Google Scholar 

  • Fung J, Stewart JE, Barbeau H (1990) The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal-cord injured subjects. J Neurol Sci 100(1–2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Gad P et al (2018) Non-invasive activation of cervical spinal networks after severe paralysis. J Neurotrauma 35(18):2145–2158

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallien P et al (1995) Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia 33(11):660–664

    CAS  PubMed  Google Scholar 

  • Geisler FH et al (2001) The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976) 26(24 Suppl):S87–S98

    Article  CAS  Google Scholar 

  • Gerasimenko YP et al (2007) Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 98(5):2525–2536

    Google Scholar 

  • Gerasimenko YP et al (2015) Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 32(24):1968–1980

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill ML et al (2018) Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 24(11):1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb GL et al (1985) Evaluation of cervical stimulation for chronic treatment of spasticity. Neurology 35(5):699–704

    Article  CAS  PubMed  Google Scholar 

  • Goulding MJNRN (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10(7):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green JB et al (1999) Cortical motor reorganization after paraplegia: an EEG study. Neurology 53(4):736–743

    Article  CAS  PubMed  Google Scholar 

  • Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5):751–766

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Jessell TM (2009) Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19(6):572–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grumbles RM et al (2013) Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation. J Neurotrauma 30(12):1062–1069

    Article  PubMed  PubMed Central  Google Scholar 

  • Guertin PA (2009) The mammalian central pattern generator for locomotion. Brain Res Rev 62(1):45–56

    Article  PubMed  Google Scholar 

  • Hägglund M et al (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 110(28):11589–11594

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansebout RR et al (1993) 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J Neurotrauma 10(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Harkema SJ et al (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77(2):797–811

    Article  CAS  PubMed  Google Scholar 

  • Harkema S et al (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781):1938–1947

    Article  PubMed  PubMed Central  Google Scholar 

  • Harkema SJ et al (2012) Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil 93(9):1508–1517

    Article  PubMed  Google Scholar 

  • Harkema SJ et al (2018) Normalization of blood pressure with spinal cord epidural stimulation after severe spinal cord injury. Front Hum Neurosci 12:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (2005) The organization of behavior: a neuropsychological theory. Psychology Press, New York

    Book  Google Scholar 

  • Herrity AN et al (2018) Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 8(1):8688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshimiya N et al (1989) A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity. IEEE Trans Biomed Eng 36(7):754–760

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz H et al (1988) Cervical spinal cord stimulation for spasticity in cerebral palsy. Neurosurgery 22(4):707–714

    Article  CAS  PubMed  Google Scholar 

  • Inanici F et al (2018) Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng 26(6):1272–1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Inanici F et al (2021) Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 29:310–319

    Article  PubMed  Google Scholar 

  • Jacobson PB et al (2021) Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis 155:105385

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Catania KC, Kaas JH (1997) Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 386(6624):495–498

    Article  CAS  PubMed  Google Scholar 

  • Jain N et al (2000) Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc Natl Acad Sci U S A 97(10):5546–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaja BNR et al (2019) Association of pneumonia, wound infection, and sepsis with clinical outcomes after acute traumatic spinal cord injury. J Neurotrauma 36(21):3044–3050

    Article  PubMed  PubMed Central  Google Scholar 

  • Järvinen TAH et al (2002) Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. J Muscle Res Cell Motil 23(3):245–254

    Article  PubMed  Google Scholar 

  • Jones EG (2000) Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 23:1–37

    Article  CAS  PubMed  Google Scholar 

  • Jones LA et al (2010) A phase 2 autologous cellular therapy trial in patients with acute, complete spinal cord injury: pragmatics, recruitment, and demographics. Spinal Cord 48(11):798–807

    Article  CAS  PubMed  Google Scholar 

  • Kemler MA et al (2000) Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med 343(9):618–624

    Article  CAS  PubMed  Google Scholar 

  • Kern H et al (2002) Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs 26(3):216–218

    Article  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17(4):224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirshblum S et al (2021) Characterizing natural recovery after traumatic spinal cord injury. J Neurotrauma

    Google Scholar 

  • Klose KJ et al (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil 78(8):789–793

    Article  CAS  PubMed  Google Scholar 

  • Knutson JS et al (2002) Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications. J Rehabil Res Dev 39(6):671–683

    PubMed  Google Scholar 

  • Krassioukov A, Claydon VE (2006) The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res 152:223–229

    Article  PubMed  Google Scholar 

  • Kucher K et al (2018) First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury. Neurorehabil Neural Repair 32(6–7):578–589

    Article  PubMed  Google Scholar 

  • Kwon BK et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682

    Article  PubMed  Google Scholar 

  • Laliberte AM et al (2019) Propriospinal neurons: essential elements of locomotor control in the intact and possibly the injured spinal cord. Front Cell Neurosci 13:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lance JW (1980) The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology 30:1303–1313

    Google Scholar 

  • Levy WJ Jr et al (1990) Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res 510(1):130–134

    Article  PubMed  Google Scholar 

  • Lovely RG et al (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92(2):421–435

    Article  CAS  PubMed  Google Scholar 

  • Malisoux L et al (2007) Effect of long-term muscle paralysis on human single fiber mechanics. J Appl Physiol 102(1):340–349

    Article  PubMed  Google Scholar 

  • Martinez M, Rossignol S (2011) Changes in CNS structures after spinal cord lesions: implications for BMI. In: Schouenborg J, Garwicz M, Danielsen N (eds) Brain machine interfaces: implications for science, clinical practice and society. Elsevier Science Bv, Amsterdam, pp 191–202

    Chapter  Google Scholar 

  • Martinez M et al (2012) Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection. J Neurosci 32(32):10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May Z et al (2017) Following spinal cord injury transected reticulospinal tract axons develop new collateral inputs to spinal interneurons in parallel with locomotor recovery. Neural Plast 2017:1932875

    Article  PubMed  PubMed Central  Google Scholar 

  • Meglio M et al (1980) Epidural spinal cord stimulation for the treatment of neurogenic bladder. Acta Neurochir 54(3–4):191–199

    Article  CAS  PubMed  Google Scholar 

  • Melzack R, Wall PDJS (1965) Pain mechanisms: a new theory. Science 150(3699):971–979

    Article  CAS  PubMed  Google Scholar 

  • Merletti R, Knaflitz M, De Luca CJ (1992) Electrically evoked myoelectric signals. Crit Rev Biomed Eng 19(4):293–340

    CAS  PubMed  Google Scholar 

  • Minassian K et al (2004) Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42(7):401–416

    Article  CAS  PubMed  Google Scholar 

  • Mirbagheri MM et al (2002) The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects. IEEE Trans Neural Syst Rehabil Eng 10(4):280–289

    Article  PubMed  Google Scholar 

  • Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. J Lancet 82:285–288

    CAS  PubMed  Google Scholar 

  • Morrison SA et al (2012) NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury. Arch Phys Med Rehabil 93(9):1574–1577

    Article  PubMed  Google Scholar 

  • Morrison SA et al (2018) Longitudinal recovery and reduced costs after 120 sessions of locomotor training for motor incomplete spinal cord injury. Arch Phys Med Rehabil 99(3):555–562

    Article  PubMed  Google Scholar 

  • Mortimer JT, Shealy CN, Wheeler C (1970) Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg 32(5):553–559

    Article  CAS  PubMed  Google Scholar 

  • Mulcahey MJ et al (2004) Implantation of the freehand system during initial rehabilitation using minimally invasive techniques. Spinal Cord 42(3):146–155

    Article  CAS  PubMed  Google Scholar 

  • Nadeau S et al (2010) Spontaneous motor rhythms of the back and legs in a patient with a complete spinal cord transection. Neurorehabil Neural Repair 24(4):377–383

    Article  PubMed  Google Scholar 

  • Olsson MC et al (2006) Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 577(Pt 1):339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlovskii GN, Fel'dman AG (1972) Classification of lumbosacral neurons by their discharge pattern during evoked locomotion. Neurophysiology 4(4):311–317

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP, Helm PJ (2002) How hardwired is the brain? Nature 420(6917):751–752

    Article  CAS  PubMed  Google Scholar 

  • Peckham PH (1987) Functional electrical stimulation: current status and future prospects of applications to the neuromuscular system in spinal cord injury. Paraplegia 25(3):279–288

    CAS  PubMed  Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Article  CAS  PubMed  Google Scholar 

  • Peckham PH, Mortimer JT, Marsolais EB (1976) Upper and lower motor neuron lesions in the upper extremity muscles of tetraplegics. Paraplegia 14(2):115–121

    CAS  PubMed  Google Scholar 

  • Penn RD et al (1989) Intrathecal baclofen for severe spinal spasticity. N Engl J Med 320(23):1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Peschanski M, Leforestier N, Rapisardi S (1993) Neuroplasticity as a basis for therapeutics in spinal-cord injuries and diseases. Restor Neurol Neurosci 5(1):87–97

    CAS  PubMed  Google Scholar 

  • Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 38(9):524–531

    Article  CAS  PubMed  Google Scholar 

  • Prentice SD (1999) Biological neural networks: hierarchical concept of brain function. Konstantin V Baev 74(2):247–247

    Google Scholar 

  • Prochazka A et al (1997) The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil 78(6):608–614

    Article  CAS  PubMed  Google Scholar 

  • Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2(4):263–273

    Article  CAS  PubMed  Google Scholar 

  • Rejc E et al (2017a) Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci Rep 7(1):13476

    Article  PubMed  PubMed Central  Google Scholar 

  • Rejc E et al (2017b) Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J Neurotrauma 34(9):1787–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Remy-Neris O et al (1999) Effects of intrathecal clonidine injection on spinal reflexes and human locomotion in incomplete paraplegic subjects. Exp Brain Res 129(3):433–440

    Article  CAS  PubMed  Google Scholar 

  • Richardson RR, McLone DG (1978) Percutaneous epidural neuro-stimulation for paraplegic spasticity. Surg Neurol 9(3):153–155

    CAS  PubMed  Google Scholar 

  • Richardson RR et al (1979) Percutaneous epidural neurostimulation in modulation of paraplegic spasticity. Six case reports. Acta Neurochir (Wien) 49(3–4):235–243

    Article  CAS  Google Scholar 

  • Rosenzweig ES et al (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13(12):1505–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig ES et al (2019) Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat Neurosci 22(8):1269–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Roy RR, Acosta L Jr (1986) Fiber type and fiber size changes in selected thigh muscles six months after low thoracic spinal cord transection in adult cats: exercise effects. Exp Neurol 92(3):675–685

    Article  CAS  PubMed  Google Scholar 

  • Roy RR et al (1998) Training effects on soleus of cats spinal cord transected (T12–13) as adults. Muscle Nerve 21(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Roy RR et al (1999) Differential response of fast hindlimb extensor and flexor muscles to exercise in adult spinalized cats. Muscle Nerve 22(2):230–241

    Article  CAS  PubMed  Google Scholar 

  • Sagi Y et al (2012) Learning in the fast lane: new insights into neuroplasticity. Neuron 73(6):1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Sangari S, Perez MA (2019) Imbalanced corticospinal and reticulospinal contributions to spasticity in humans with spinal cord injury. J Neurosci 39(40):7872–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangari S et al (2019) Residual descending motor pathways influence spasticity after spinal cord injury. Ann Neurol 86(1):28–41

    PubMed  PubMed Central  Google Scholar 

  • Sangari S et al (2021) Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury. J Physiol

    Google Scholar 

  • Santamaria AJ et al (2020) Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front Neurol 11:514181

    Article  PubMed  Google Scholar 

  • Schleip R et al (2006) Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue. Med Hypotheses 66(1):66–71

    Article  PubMed  Google Scholar 

  • Shealy CN, Mortimer JT, Reswick JB (1967) Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 46(4):489–491

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS, Laslett EE (1903) Observations on some spinal reflexes and the interconnection of spinal segments. J Physiol 29(1):58–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwood AM, Dimitrijevic MR, McKay WB (1992) Evidence of subclinical brain influence in clinically complete spinal-cord injury—discomplete SCI. J Neurol Sci 110(1–2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Stauffer ES (1975) Spinal cord injuries. Clin Orthop Relat Res 112:2–3

    Google Scholar 

  • Stein RB, Mushahwar V (2005) Reanimating limbs after injury or disease. Trends Neurosci 28(10):518–524

    Article  CAS  PubMed  Google Scholar 

  • Tabary JC et al (1972) Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 224(1):231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanadini LG et al (2014) Identifying homogeneous subgroups in neurological disorders: unbiased recursive partitioning in cervical complete spinal cord injury. Neurorehabil Neural Repair 28(6):507–515

    Article  PubMed  Google Scholar 

  • Tigchelaar S et al (2019) MicroRNA biomarkers in cerebrospinal fluid and serum reflect injury severity in human acute traumatic spinal cord injury. J Neurotrauma 36(15):2358–2371

    Article  PubMed  Google Scholar 

  • Topka H et al (1991) Reorganization of corticospinal pathways following spinal cord injury. Neurology 41(8):1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Vidalsanz M et al (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion-cells in the adult-rat. J Neurosci 7(9):2894–2909

    Article  CAS  Google Scholar 

  • Wagner FB et al (2018) Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563(7729):65–71

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2020) Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 143(6):1697–1713

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidner N et al (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98(6):3513–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss P (1941) Autonomous versus reflexogenous activity of the central nervous system. Proc Am Phil Soc 84(1):53–64

    Google Scholar 

  • Wernig A et al (1995) Laufband therapy based on rules of spinal locomotion is effective in spinal-cord injured persons. Eur J Neurosci 7(4):823–829

    Article  CAS  PubMed  Google Scholar 

  • Wirth ED 3rd et al (2001) Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J Neurotrauma 18(9):911–929

    Article  PubMed  Google Scholar 

  • Wirz M et al (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86(4):672–680

    Article  PubMed  Google Scholar 

  • Wolpaw JR (2018) The negotiated equilibrium model of spinal cord function. J Physiol 596(16):3469–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama H et al (2016) Distinct sets of locomotor modules control the speed and modes of human locomotion. Sci Rep 6:14

    Article  Google Scholar 

  • Zhang J et al (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82(1):138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zholudeva LV et al (2018) The neuroplastic and therapeutic potential of spinal interneurons in the injured spinal cord. Trends Neurosci 41(9):625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The ultrasound data were collected at the University of Louisville within the SCI neuromodulation program. Data was analyzed by J Guest at the University of Miami. Specific contributors are Drs. Susan Harkema, Jill Wecht, Alex Ovechkin, and Bonnie Legg, Jessie Fisher, and Shelly Wade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santamaria, A.J., Saraiva, P.M., Chang, S.J., Opris, I., Noga, B.R., Guest, J.D. (2021). Spinal Cord Injury and Epidural Spinal Cord Stimulation. In: Opris, I., A. Lebedev, M., F. Casanova, M. (eds) Modern Approaches to Augmentation of Brain Function. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-54564-2_2

Download citation

Publish with us

Policies and ethics