Skip to main content

In Vivo Study of Laser Irradiation Techniques for the Treatment and Palliation of Lung Cancer Using Photodynamic Therapy

  • Chapter
  • First Online:
Palliative Care for Chronic Cancer Patients in the Community
  • 982 Accesses

Abstract

The increasing use of lasers in photodynamic therapy (PDT) for the treatment of cancer requires a better understanding of the effects of different laser parameters on the results of PDT. To minimize thermal damage and optimize healing benefits, we compared pulse, burst pulse, and continuous wave (CW) laser irradiation modes in PDT treatment of lung cancer in an in vivo animal model. Our results show that pulse and burst pulse modes, with high power density and short irradiation times relative to CW, improve the photodynamic reaction without thermal damage. In contrast, the CW irradiation mode induced thermal damage with the same radial profile as that of the laser beam and the temperature in the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther. 2004;1:43–8.

    Article  Google Scholar 

  2. Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J. Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci. 2004;19:139–49.

    Article  Google Scholar 

  3. Wilson BC, Patterson MS. The physics of photodynamic therapy. Phys Med Biol. 1986;31:327–60.

    Article  CAS  Google Scholar 

  4. Sterenborg HJ, van Gemert MJ. Photodynamic therapy with pulsed light sources: a theoretical analysis. Phys Med Biol. 1996;41:835–49.

    Article  CAS  Google Scholar 

  5. Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Med Phys. 2008;35:3127–36.

    Article  CAS  Google Scholar 

  6. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:R61–R109.

    Article  CAS  Google Scholar 

  7. Feather JW, Driver I, King PR, Lowdell C, Dixon B. Light delivery to tumour tissue through implanted optical fibres during photodynamic therapy. Lasers Med Sci. 1990;5:345–50.

    Article  Google Scholar 

  8. Star WM. Light delivery and light dosimetry for photodynamic therapy. Lasers Med Sci. 1990;5:107–13.

    Article  Google Scholar 

  9. Murrer LH, Marijnissen JP, Star WM. Light distribution by linear diffusing sources for photodynamic therapy. Phys Med Biol. 1996;41:951–61.

    Article  CAS  Google Scholar 

  10. Hetzel FW, Brahmavar SM, Chen Q, Jacques SL, Patterson MS, Wilson BC, Zhu TC. The American Association of Physicists in Medicine, Photodynamic Therapy Dosimetry, AAPM Report No. 88, Medical Physics Publishing for the American Association of Physicists in Medicine. 2005.

    Google Scholar 

  11. Lenz P. Nonlinear optical effects in PDT. J Phys IV. 1994;4:237–40.

    Google Scholar 

  12. Tuchin V. Tissue optics light scattering methods and instruments for medical diagnosis. 2nd ed. Bellingham, Washington USA: SPIE Press; 2007.

    Google Scholar 

  13. Niemz MH. Laser-tissue interactions: fundamentals and applications. Berlin: Springer-Verlag; 2002.

    Book  Google Scholar 

  14. Baranoski GVG, Krishnaswamy A. An introduction to light interaction with human skin. RITA. 2004;XI:33–62.

    Article  Google Scholar 

  15. Welch AJ. The thermal response of laser irradiated tissue. IEEE J Quantum Electron. 1984;20:1471–81.

    Article  Google Scholar 

  16. Welch AJ, van Gemert MJC. Optical-thermal response of Laser-irradiated tissue. New York: Plenum Press; 1995.

    Book  Google Scholar 

  17. Zhou J, Chen JK, Zhang Y. Theoretical analysis of thermal damage in biological tissues caused by laser irradiation. Tech Science Press. MCB. 2007;4(1):27–39.

    Google Scholar 

  18. Shih TC, Yuan P, Lin WL, Kou HS. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med Eng Phys. 2007;29:946–53.

    Article  Google Scholar 

  19. http://ctrgenpath.net/static/atlas/mousehistology/Windows/integumentary/skin.html

  20. Hamilton G. Investigations of the thermal properties of human and animal tissues. PhD Thesis, (Department of Physics and Astronomy, University of Glasgow, UK. 1998.

    Google Scholar 

  21. Tsai A., Investigation of variability in skin tissue intrinsic thermal conductivity measurements. Master of Science Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, US. 1995.

    Google Scholar 

  22. Choi B, Welch AJ. Analysis of thermal relaxation during laser irradiation of tissue. Lasers Surg Med. 2001;29:351–9.

    Article  CAS  Google Scholar 

  23. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 1997;39:1–18.

    Article  CAS  Google Scholar 

  24. Juzeniene A, Nielsen KP, Moan J. Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol. 2006;25:7–28.

    Article  CAS  Google Scholar 

  25. Mooreyzx JV, Westz CM, Whitehurstyz C. The biology of photodynamic therapy. Phys Med Biol. 1997;42:913–35.

    Article  Google Scholar 

  26. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24:259–68.

    Article  CAS  Google Scholar 

  27. Pervaiz S, Olivo M. Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol. 2006;33:551–6.

    Article  CAS  Google Scholar 

  28. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–81.

    Article  Google Scholar 

  29. Nowis D, Makowski M, Stoklosa T, Legat M, Issat T, Golab J. Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol. 2005;52:339–52.

    Article  CAS  Google Scholar 

  30. Henderson BW, Waldow SM, Mang TS, Potter WR, Malone PB, Dougherty TJ. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res. 1985;45:572–6.

    CAS  Google Scholar 

  31. Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancer. 2011;3:1014–41.

    Article  CAS  Google Scholar 

  32. Ferreira SD, Tedesco AC, Sousa G, Zângaro RA, Silva NS, Pacheco MT, Pacheco-Soares C. Analysis of mitochondria, endoplasmic reticulum and actin filaments after PDT with AlPcS(4). Lasers Med Sci. 2004;18:207–12.

    Article  CAS  Google Scholar 

  33. Tsai JC, Wu CL, Chien HF, Chen CT. Reorganization of cytoskeleton induced by 5-aminolevulinic acid-mediated photodynamic therapy and its correlation with mitochondrial dysfunction. Lasers Surg Med. 2005;36:398–408.

    Article  Google Scholar 

  34. https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf

  35. https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html

  36. Allison R, Moghissi K, Downie G, Dixon K. Photodynamic therapy (PDT) for lung cancer. Photodiagn Photodyn Ther. 2011;8:231–9.

    Article  Google Scholar 

  37. Kim JO, Jung MK, Jung SS. Photodynamic therapy (PDT) in lung cancer. Tuberc Respir Dis. 2007;62:175–83.

    Article  Google Scholar 

  38. Okunaka T, Kato H, Konaka C, Furukawa K, Harada M, Yamamoto Y. Photodynamic therapy of lung cancer with bronchial artery infusion of photofrin. Diagn Ther Endosc. 1996;2:203–6.

    Article  CAS  Google Scholar 

  39. Okunaka T, Hiyoshi T, Furukawa K, Yamamoto H, Tsuchida T, Usuda J, Kumasaka H, Ishida J, Konaka C, Kato H. Lung cancers treated with photodynamic therapy and surgery. Diagn Ther Endosc. 1999;5:155–60.

    Article  CAS  Google Scholar 

  40. Patrice T, Olivier D, Bourre L. PDT in clinics: indications, results, and markets. J Environ Pathol Toxicol Oncol. 2006;25:467–85.

    Article  Google Scholar 

  41. Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK. Photodynamic therapy for treatment of solid tumors – potential and technical challenges. Technol Cancer Res Treat. 2008;7:309–20.

    Article  CAS  Google Scholar 

  42. Moghissi K, Dixon K, Stringer M, Freeman T, Thorpe A, Brown S. The place of bronchoscopic photodynamic therapy in advanced unresectable lung cancer: experience of 100 cases. Eur J Cardiothorac Surg. 1999;15:1–6.

    Article  CAS  Google Scholar 

  43. Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, Suga Y, Honda H, Nagatsuka Y, Ohira T, Tsuboi M, Hirano T. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol. 2006;1:489–93.

    Article  Google Scholar 

  44. Jang T, Kim HK, Oak CH, Jung MH. Photodynamic therapy in early lung cancer: a report of two cases. Korean J Intern Med. 2006;21:178–82.

    Article  Google Scholar 

  45. Moghissi K, Dixon K, Thorpe JA, Stringer M, Oxtoby C. Photodynamic therapy (PDT) in early central lung cancer: a treatment option for patients ineligible for surgical resection. Thorax. 2007;62:391–5.

    Article  Google Scholar 

  46. Lee JH, Jeon K, Koh WJ, Suh GY, Chung MP, Kim H, Kwon OJ, Han J, Um SW. Usefulness of photodynamic therapy in the management of early central lung cancer: a report of three cases. Tuberc Respir Dis. 2009;67:338–44.

    Article  Google Scholar 

  47. Lee YS, Oh Y-M, Shim TS, Kim WS, An JS, Choi CM, Jang SH. The clinical outcomes of photodynamic therapy in early lung cancer patients. Tuberc Respir Dis. 2011;71:266–70.

    Article  Google Scholar 

  48. Heo EY, Kim YJ, Yang SC. Fatal broncho-mediastinal fistula in a patient with non-small cell lung cancer after photodynamic therapy. J Lung Cancer. 2011;10:102–4.

    Article  Google Scholar 

  49. Simone CB 2nd, Friedberg JS, Glatstein E, Stevenson JP, Sterman DH, Hahn SM, Cengel KA. Photodynamic therapy for the treatment of non-small cell lung cancer. J Thorac Dis. 2011;4:63–75.

    Google Scholar 

  50. Yoon SH, Han KT, Kim GN, Lee SI. Effect of photodynamic therapy in lung cancer. Tuberc Respir Dis. 2004;57:358–64.

    Article  Google Scholar 

  51. Kim YS, Park JS, Jee YK, Lee KY. Photodynamic therapy induced cell death using ALA and 632 nm diode laser in A549 lung cancer cells. Tuberc Respir Dis. 2004;56:178–86.

    Article  Google Scholar 

  52. Kang DW, Kwon SJ, Kim JO, An JY, Jung SS, Lim HS, Song KS, Lee YH, Kim SY. The histological changes of photodynamic therapy using 635 nm diode laser on normal tissues of C57BL/6 mouse model. J Lung Cancer. 2004;3:122–7.

    Google Scholar 

  53. Neckel CP. Comparative study on CW-mode versus pulsed mode in A1GaAs-diode lasers. Proc SPIE. 2001;4249:44–9.

    Article  Google Scholar 

  54. Panjehpour M, Overholt BF, Sneed RE, DeNovo RC, Petersen MG. Comparison between pulsed and continuous wave lasers for photodynamic therapy. Proc SPIE. 1993;1881:319–24.

    Article  Google Scholar 

  55. Barr H, Boulos PB, MacRobert AJ, Tralau CJ, Phillips D, Bown SG. Comparison of lasers for photodynamic therapy with a phthalocyanine photosensitizer. Lasers Med Sci. 1989;4:7–12.

    Article  Google Scholar 

  56. Matthewson K, Coleridge-Smith P, Northfield TC, Bown SG. Comparison of continuous-wave and pulsed excitation for interstitial neodymium-YAG laser induced hyperthermia. Lasers Med Sci. 1986;1:197–201.

    Article  Google Scholar 

  57. Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB, Huang YY, Wu Q, Whalen MJ, Sato S, Obara M, Hamblin MR. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6:1–9.

    Article  Google Scholar 

  58. Karu TI, Ryabykh TP, Antonov SN. Different sensitivity of cells from tumor-bearing organisms to continuous-wave and pulsed laser radiation (λ = 632.8 nm) evaluated by chemiluminescence test II. Comparison of responses of human blood: healthy persons and patients with colon cancer. Lasers Life Sci. 1996;7:99–105.

    Google Scholar 

  59. Lim HS. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques. J Biomed Opt. 2012;17:128001.

    Article  Google Scholar 

  60. Hayata Y, Kato H, Konaka C, Ono J, Takizawa N. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest. 1982;81:269–77.

    Article  CAS  Google Scholar 

  61. Diaz-Jimenez JP, Martinez-Ballarin JE, Llunell A, Farrero E, Rodriguez A, Castro MJ. Efficacy and safety of photodynamic therapy versus Nd-YAG laser resection in NSCLC with airway obstruction. Eur Respir J. 1999;14:800–5.

    Article  CAS  Google Scholar 

  62. McCaughan JS Jr, Williams TE. Photodynamic therapy for endobronchial malignant disease: a prospective fourteen-year study. J Thorac Cardiovasc Surg. 1997;114:940–6; discussion 946-947

    Article  Google Scholar 

  63. Furuse K, Fukuoka M, Kato H, et al. A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan lung Cancer photodynamic therapy study group. J Clin Oncol. 1993;11:1852–7.

    Article  CAS  Google Scholar 

  64. Lam S, Muller NL, Miller RR, et al. Laser treatment of obstructive endobronchial tumors: factors which determine response. Lasers Surg Med. 1987;7:29–35.

    Article  CAS  Google Scholar 

  65. Loewen GM, Pandey R, Bellnier D, Henderson B, Dougherty T. Endobronchial photodynamic therapy of Cancer 280 CA: a Cancer journal for clinicians photodynamic therapy for lung cancer. Lasers Surg Med. 2006;38:364–70.

    Article  Google Scholar 

  66. Corti L, Toniolo L, Boso C, et al. Longterm survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg Med. 2007;39:394–402.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Academic Promotion Foundation of Chungnam National University of Korea (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Soo Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kenar, N., Lim, H.S. (2021). In Vivo Study of Laser Irradiation Techniques for the Treatment and Palliation of Lung Cancer Using Photodynamic Therapy. In: Silbermann, M. (eds) Palliative Care for Chronic Cancer Patients in the Community. Springer, Cham. https://doi.org/10.1007/978-3-030-54526-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54526-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54525-3

  • Online ISBN: 978-3-030-54526-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics